
Santucci’s Stats 200 Notes

Basic Probability
Cauchy-Schwarz Markov Chebyschev

|E(XY )| ≤
√
E(X2)E(Y 2) P (X ≥ t) ≤

E[X]

t
P (|X − µ| ≥ t) ≤

σ2

t2

Conditional Expectation E[g(X)|Y = y] =
∫∞
−∞ g(x)f(X|Y )(x|y)dx

Conditional Variance
V ar[g(X)|Y = y] = E[{g(X)}2|Y = y]− {E[g(X)|Y = y]}2

Total Expectation E[g(X)] = E{E[g(X)|Y ]}

Total Variance V ar(X) = E[V ar(g(X)|Y )] + V ar(E[g(X)|Y ])

Convergence Concepts
Convergence in Probability {Xn : n ≥ 1} converges in probability

to X if ∀ε > 0: Pr(|Xn −X| > ε)→ 0.

Convergence in Distribution {Xn : n ≥ 1} converges in

distribution to X if F (Xn)(x)→ F (X)(x) at every point where
F is continuous.

Thrm. If Xn
P→ X, then Xn

D→ X.

Thrm. Let α ∈ R be a constant. Then Xn
P→ α ⇐⇒ Xn

D→ α.

Showing Convergence in Probability Options: show (1) directly
through definition, (2) if convergence to a constant, try showing
convergence in distribution, or (3) use thrm.: if E[Xn]→ α ∈ R
and V ar(Xn)→ 0, =⇒ Xn

P→ α.

Showing Convergence in Distribution Options: show (1)
Convergence in Probability, (2) Convergence in Distribution
through CDF’s, or (3) CLT [requires i.i.d. and sums/average].

Continuous Mapping Theorems

Thrm. If Xn
P→ α for some constant α ∈ R and g : R→ R is

continuous at α, then g(Xn)
P→ g(α)

(This is also true if Xn
D→ α, using the above thrm.)

Thrm. If Xn
P→ X and g : R→ R is continuous, then g(Xn)

P→ g(X)

Thrm. If Xn
D→ X and g : R→ R is continuous, then g(Xn)

D→ g(X)

Slutsky’s Theorem

If Xn
D→ X and Yn

P→ α, where α ∈ R is a constant, then

Xn + Yn
D→ X + α and XnYn

D→ aX.

Weak Law of Large Numbers
Let {Xn : n ≥ 1} be a sequence of i.i.d. R.V.’s with E[|X1|] <∞. Let

X̄n = n−1∑n
i=1 Xi. Then, X̄n

P→ E[X1].

Proof Let X1, ...Xn be i.i.d (µ, σ2), with σ2 <∞, Chebyschev

implies Pr(|X̄n − µ| < ε) ≤ 1− σ2

nε2
. Hence,

limn→∞Pr(|X̄n − µ| < ε) = 1.

Central Limit Theorem
The asymptotic distribution of an average of i.i.d. R.V.’s is a normal
distribution, regardless of the individual random variables themselves.

Thrm. Let {Xn : n ≥ 1} be a sequence of i.i.d. R.V.’s with

V ar(X1) <∞. Let X̄n = n−1∑n
i=1 Xi. Then

√
n(X̄n − µ)

σ

D→ N (0, 1)

where µ = E[X1] and σ2 = V ar(X1).

Delta Method
Basic idea: g(Yn)− g(α) ≈ g′(α)(Yn − α)

Thrm. Let {Yn : n ≥ 1} be a sequence of random variables such that
√
n(Yn − α)

D→ Z for some random variable Z and some
constant α ∈ R. Let g : R→ R be continuously differentiable
at α. Then,

√
n[g(Yn)− g(α)]

D→ g
′
(α)Z

Proof Formally,
√
n[g(Yn)− g(α)] = g′(Yn∗)

√
n(Yn − α) for some

Yn∗ between α and Yn. Note that for any ε > 0,

Pr(|Yn ∗ −α| > ε) ≤ Pr(|Yn − α| > ε)
P→ 0 since Yn

P→ α

(through WLLN). Then, Yn∗
P→ α, so g′(Yn∗)

P→ g′(α) by our

first continuous mapping theorem. Since
√
n[Yn − α]

D→ Z, the
result follows by Slutsky’s theorem.

Random Vectors
Expectation E[X] = [E[X1], ..., E[Xn]]

Variance V ar(X) = E[{X − E[X]}{X − E[X]}ᵀ] =
E[XXᵀ]− E[X]E[X]ᵀ

Linearity E[α+BX +CY ] = α+BE[X] +CE[Y ]
V ar(α+BX) = BV ar(X)Bᵀ

Multivariate Normal Distribution
Definition Let Z be a random vector with θ = E[Z] and

V = V ar(Z). Z is called multivariate normal, denoted
Z ∼ Np(θp,V p) ⇐⇒ αᵀZ has a univariate normal
distribution for all α ∈ Rp. The following properties hold:

PDF If V is non-singular (invertible), then

f(z) =
1

(2π)p/2detV 1/2
exp

[
−1/2(z − θ)

ᵀ
V
−1

(z − θ)
]

where det denotes determinant.

Independence Zi ⊥⊥ Zj ⇐⇒ Vij = Cov(Zi, Zj) = 0.

Standard Normal Let 0p Denote a zeros vector length p, and Ip
denotes the p× p identity matrix. Np(0p, Ip) is called the
p-variate standard normal distribution.

Lemma Let A be a p× p matrix that is orthogonal
(AAᵀ = AᵀA = Ip), and let Z ∼ Np(0p, Ip). Then
AZ ∼ Np(0p, Ip).

Proof For any vector b ∈ Rp, the random vector bᵀAZ = (Aᵀb)ᵀZ
has a univariate normal since Z is multivariate normal. Then
AZ is multivariate normal. Now simply note that
E[AZ] = AE[Z] = 0p and that
V ar(AZ) = AIpA

ᵀ = AAᵀ = Ip

Sample Variance

Let X1, ..., Xn
i.i.d.∼ N (µ, σ2), where n ≥ 2. X̄n = n−1∑n

i=1 Xi where

X̄n ∼ N (µ, σ
n

n ) and

S
2

=
1

n− 1

n∑
i=1

(Xi − X̄n)
2

=
1

n− 1

[
n∑
i=1

X
2
i − (X̄n)

2

]

Chi-Squared Distribution
Let Z ∼ Np(0p, Ip), then ZᵀZ =

∑p
i=1 Z

2
i is called a chi-squared

distribution with p-degrees of freedom, with expectation p and
variance 2p. Recall: V ar(Zi) = 1 = E[Z2

i ]

Lemma The χ2
1 distribution is the Gamma(1/2, 1/2) distribution.

Lemma Let U1, ..., Un be independent with Ui ∼ Gamma(αi, β) for
each i ∈ {1, ...n}. Then

∑n
i=1 Ui ∼ Gamma(

∑n
i=1 αi, β).

Lemma χ2
p ∼ Gamma(p/2, 1/2)

Joint Dist.: Sample Mean/Variance

Thrm. Let X1, ..., Xn
i.i.d.∼ N (µ, σ2), where n ≥ 2. Then

X̄n ∼ N (µ, σ
2

n ) and
(n−1)S2

σ2 ∼ χ2
n−1. Further, X̄n and S2 are

independent.

Proof Sufficient to prove for µ = 0 and σ2 = 1. Let
X = (X1, ..., Xn) ∼ Nn(0n, In). Now let A be and orthogonal
p× p matrix, for which all the elements in the first row are 1√

n
,

constructed via Graham-Schmidt. Let Y = (Y1, ..., Yn) = AX.
By a previous lemma, Y ∼ Nn(0n, In), so the sum of squares
of its last n− 1 elements is

∑n
i=2 Y

2
i ∼ χ

2
n−1. Note that the

first element is Y1 =
√
nX̄n, so we may write:∑n

i=2 Y
2
i =

∑n
i=1 Y

2
i − Y

2
1 = XᵀAᵀAX − n(X̄n)2 =

XᵀX − n(X̄n)2 =
∑n
i=1 X

2
i − n(X̄n)2 = (n− 1)S2 Finally,

note that Y1, ..., Yn are all independent, so Y1 and
∑n
i=2 Y

2
i are

independent.

Expectation The above theorem tells us that E[(n−1

σ2 )S2] = n− 1,

and thus E[S2] = σ2

Without Normality Suppose X1, ..., Xn are i.i.d with E[X1] = µ
and V ar(X1) = σ2, but suppose their distribution is not

normal. We still have E[X̄n] = µ, and V ar(X̄n) = σ2

n , and

E[S2] = σ2. However, X̄n is not necessarily normal (although
it is approximately normal for large n by CLT), and the

distribution of (n−1

σ2 )S2 is not necessarily chi-squared. Further,

X̄n and S2 are not necessarily independent.

Student’s T-Distribution
Definition Let Z ∼ N (0, 1) and U ∼ χ2

p be independent R.V.’s, the

distribution of Z√
U/p

is student’s t-distribution with p-degrees

of freedom. It is centered around 0.

Thrm. Let X1, ..., Xn
i.i.d∼ N (µ, σ2), where n ≥ 2, then

X̄n−µ√
S2/n

∼ tn−1.

Proof Let Z = X̄n−µ√
σ2/n

and U = (n− 1)S2/σ2, by our last theorem

Z ∼ N (0, 1) and U ∼ χ2
n−1, and they are independent. The

result follows by definition since T = Z√
U/(n−1)

Lemma Let Un ∼ χ2
n for every n ≥ 1. Then Un/n

P→ 1 as

limn→∞. Proof: Let Z1, ..., Zn
i.i.d.∼ N (0, 1), and let

Un =
∑n
i=1 Z

2
i . Un/n

P→ 1 by WLLN, therefore Un/n
D→ 1.

Thrm. Let Tn ∼ tn for every n ≥ 1. Then Tn
D→ N (0, 1) as

limn→∞. Proof: Let Z ∼ N (0, 1) and U ∼ χ2
n, and let

Z ⊥⊥ U . The results follow using the Continuous Mapping
Thrm., the above lemma, and Slutsky’s Thrm. .

Maximum Likelihood Estimation
Likelihood Describes the probability of observing data given certain

parameter values. It is not a “pdf” of θ given the data x.

Thrm. Let θ̂mle be a maximum likelihood estimator of θ over the
parameter space Θ, and let g be a function that with domain Θ

and image Ξ. Then ξ̂mle = g(θ̂mle) is a maximum likelihood
estimator of ξ = g(θ) over the parameter space Ξ.

Example Let X1, ..., Xn
i.i.d.∼ N (µ, σ2), where µ ∈ R and σ2 > 0 are

both unknown. Find the MLE of both parameters.

Lx(µ, σ2) =
n∏
i=1

1√
2πσ2

exp

[
− (Xi−µ)2

2σ2

]
=

(2πσ2)−n/2 exp
[
− 1

2σ2

∑n
i=1(xi − µ)2

]
, therefore,

`x(µ, σ2) = −n2 ln (2π)− n
2 ln (σ2)− 1

2σ2

∑n
i=1(xi − µ)2.



Differentiating w.r.t. each parameter yields:
∂
∂µ `x(µ, σ2) = 1

σ2

∑n
i=1 xi −

nµ

σ2 = n
σ2 (x̄n − µ), and

∂
∂σ2 `x(µ, σ2) = − n

2σ2 + 1
2(σ2)2

∑n
i=1(xi − µ)2 =

1
2(σ2)2

∑n
i=1

[
(xi − µ)2 − σ2

]
.

Setting both sides to zero, first note that:
∂
∂µ `x(µ, σ2) = n

σ2 (x̄− µ) = 0 =⇒ x̄ = µ.

Substitute µ = x̄ in our other partial derivative and set it to 0:
∂
∂σ2 `x(µ, σ2) = 1

2(σ2)2

∑n
i=1

[
(xi − µ)2 − σ2

]
= 0 =⇒ σ2 =

n−1∑n
i=1(xi − x̄)2 =

(
n−1
n S2

)
Tips 1. Check 2nd derivative. 2. Check Boundaries. 3. Ensure

estimator’s max/min are within parameter space.

Bayesian Estimation
Conjugate Priors A family of distributions is called conjugate for a

particular likelihood function if choosing a prior from that
family leads to a posterior that is also from that family.

Example Let X1, ..., Xn|µ
i.i.d.∼ N (µ, σ2), where µ ∈ R is unknown

but σ2 > 0 is known. Let the prior on µ be µ ∼ N (ξ, τ2), where
ξ ∈ R and τ2 > 0 are known. To find the posterior of µ, we use
the shortcut method, ignoring anything that is not a function

of µ: Lx(µ)π(µ) ∝ exp
[
− 1

2σ2

∑n
i=1(xi − µ)2

]
exp

[
− (µ−ξ)2

2τ2

]
∝ exp

[
µ

σ2

∑n
i=1 xi −

nµ2

2σ2 −
µ2

2τ2 + ξµ

τ2

]
∝ exp

[
− (nτ2+σ2)µ2

2σ2τ2 +
(nx̄τ2+ξσ2)µ

σ2τ2

]
∝ exp

[
− 1

2

(
nτ2+σ2

σ2τ2

)(
µ2 − 2µnτ

2x̄+σ2ξ

nτ2+σ2

)]
∝ exp

[
− 1

2

(
nτ2+σ2

σ2τ2

)(
µ− nτ2x̄+σ2ξ

nτ2+σ2

)2
]
, which we recognize as

another normal distribution. Thus, the posterior distribution of µ

given X = x is: µ|x ∼ N
(
nτ2x̄+σ2ξ

nτ2+σ2 , σ2τ2

nτ2+σ2

)
, which can be

rewritten as µ|x ∼ N
[

1
(σ2/n)

1
τ2 + 1

σ2/n

x̄+
1
τ2

1
τ2 + 1

σ2/n

ξ, 1
1
τ2 + 1

σ2

]

Estimators - Finite Sample

Bias The bias of an estimator θ̂ of a parameter θ is

Biasθ(θ̂) = Eθ(θ̂)− θ. The estimator θ̂ is unbiased if

Biasθ(θ̂) = 0 for all θ in the parameter space Θ.

Example Let X1, ..., Xn be i.i.d. random variables such that both
µ = E(µ,σ2)(X1) and σ2 = V ar(µ,σ2)(X1) are finite, and

suppose n ≥ 2. Let X̄ and S2 be the usual sample mean and
sample variance, respectively. Then:
E(µ,σ2)(S

2) = 1
n−1E(µ,σ2)

(∑n
i=1 X

2
i − nX̄

2
)

=

1
n−1

[
n(µ2 + σ2)− n(µ2 + σ2

n )
]

= n−1
n−1σ

2 = σ2.

Example Bias(µ,σ2)

[
(n−1)S2

n

]
= E(µ,σ2)

[
(n−1)S2

n

]
− σ2 =

(n−1)σ2

n − σ2 = −σ2

n , which is negative ∀σ2 > 0. =⇒ This

estimator tends to underestimate the true value of σ2, on
average.

Variance It can also be useful to consider the variance of an
estimator.

Example Suppose X1, ..., Xn
i.i.d.∼ N (µ, σ2). Then: V ar(µ,σ2)(S

2) =(
σ2

n−1

)2
V ar(µ,σ2)

[
(n−1)S2

σ2

]
=
(
σ2

n−1

)2
[2(n− 1)] =

2(σ2)2

n−1 ,

noting that (n− 1)S2/σ2 ∼ χ2
n−1 since

X1, ..., Xn
i.i.d.∼ N (µ, σ2). It follows that:

V ar(µ,σ2)

[(
n−1
n

)
S2
]

=
(
n−1
n

)2
V ar(µ,σ2)(S

2), which is less

than the variance of S2.

Trade-off Usually, when comparing sensible estimators, those with
larger bias often have smaller variance. To get a better idea of
how to compare estimators, use Mean Squared Error.

Mean Squared Error The M.S.E. of an estimator θ̂ of a parameter

θ is MSEθ(θ̂) = Eθ[(θ̂ − θ)2].

Thrm. Let θ̂ be an estimator of theta. Then,

MSEθ(θ̂) = [Biasθ(θ̂)]2 + V arθ(θ̂).

Proof MSEθ(θ̂) = Eθ

[
(θ̂ − θ)2]

]
=
[
Eθ(θ̂ − θ)

]2
+ V arθ(θ̂ − θ) =[

Biasθ(θ̂)
]2

+ V arθ(θ̂)

Thrm Let γw(θ̂) =
∫
Θ
MSEθ(θ̂)w(θ) dθ. Let θ̂B denote the posterior

mean of θ under the prior π(θ) = w(θ). Then, γw(θ̂B) ≤ γw(θ̂)

for any other estimator θ̂ of θ.

Finding Unbiased Estimators No ironclad solution: (1) Look at
E[X] and V ar(X), play with E[X], E[X2] and E[X]2 to get
something that looks like we’re trying to estimate. (2) Solve
for MLE. Check it’s bias, adjust. (3) Find a function that

“combines” with our pdf. E.g. X1, ..., Xn
i.i.d.∼ Expo(λ). One

attempt (which fails) is to try: e−cx, via E
[
e−cx

]
Showing Unbiased Estimators fail to exist Estimators map

observed data to estimates. Let ti be the value our estimator
takes on when we observe x = i. Using LOTUS,

Eθ[θ̂] =
∑n
i=1 ti Pr(X = i). Sometimes, the form of this

expectation implies we can’t be unbiased.

Estimators - Consistency

Definition An estimator θ̂n is a consistent estimator of a parameter θ

if θ̂n
P→ θ for all θ ∈ Θ.

Lemma Suppose µ = Eµ(X1) is finite, and let X̄n be the usual
sample mean of an i.i.d. sample X1, ..., Xn. If αn is any
sequence such that αn → 1, then αnX̄n is a consistent
estimator of µ.

Thrm. If E(Xn)→ α ∈ R and V ar(Xn)→ 0, then Xn
P→ α, via

Chebyschev’s Inequality and the definition of convergence in
probability. These conditions are sufficient, but not necessary!

Corollary If Eθ(θ̂n)→ θ and V arθ(θ̂n)→ 0 for all θ ∈ Θ, then θ̂n is
a consistent estimator of θ. These conditions are sufficient,
but not necessary!.

Regularity Conditions 1. The data X = (X1, ..., Xn) is an i.i.d.

sample with likelihood Lx(θ) =
n∏
i=1

Lxi (θ) 2. The parameter

space Θ is an open subset of R (note that Θ = R is allowed) 3.
The set χ = {x1 ∈ R : Lx1

(θ) > 0} (called the support) does
not depend on θ. 4. If Lx1 (θ1) = Lx1 (θ2) for all x1 ∈ χ
(except possibly for some set of values with probability zero),
then θ1 = θ2. 5. The likelihood Lx1

(θ) must satisfy certain
smoothness conditions as a function of θ.

Thrm Let θ̂n be the MLE of θ based on the sample
Xn = (X1, ..., Xn). Then under the regularity conditions

above, θ̂n is a consistent estimator of θ.

Bias Vs. Consistency

Let Y1, ..., Yn
i.i.d.∼ Bern(θ). Example estimators, θ̂, for θ:

Consistent Not Consistent

Unbiased
∑n
i=1 Yi
n Y1

Not Unbiased (1 + 1
n )

∑n
i=1 Yi
n 1

Example Suppose that θ̂ is an unbiased estimator for θ. Is θ̂2

unbiased for θ2? No. Although Eθ[θ̂] = θ,

Eθ[θ̂2] =
(
Eθ[θ̂]

)2
+ V arθ(θ̂) = θ2 + V ar(θ̂2) ≥ θ2, where

V arθ(θ̂) non-zero unless our estimator is a constant.

Conjugate Prior Examples

Likelihood Parameter Conjugate Prior Prior Hyper Post. Hyper
Multinomial p prob vector, k Dirichlet α α+ (c1, ..., ck) (ci is num. obs. in cat i)
Hypergeom. N pop. size M (target members) Beta-binomial n = N,α, β α+

∑n
i=1 xi, β +

∑n
i=1 Ni −

∑n
i=1 xi

Normal, known σ2 µ Norm µ, σ2

(
µ0
σ2

0

+

∑n
i=1 xi
σ2

)
(

1
σ2

0

+ n
σ2

) ,

(
1
σ2

0
+ n
σ2

)−1

Normal, known µ σ2 Inv. Gamma α, β α+ n
2

, β +
∑
i=1 n(xi−µ)2

2

Normal, known µ σ2 Scaled Inv. χ2 ν, σ2 ν + n,
νσ2

0+
∑n
i=1(xi−µ)2

ν+n
Uniform U(0, θ) Pareto xm, k max{x1, ..., xn, xm}, k + n

Pareto, known min xm k (shape) Gamma α, β α+ n, β +
∑n
i=1 ln

(
xi
xm

)
Weibull, known β θ Inv. Gamma α, β α+ n, β +

∑n
i=1 x

β
i

Inv. Gamma known α β (inv. scale) Gamma α0, β0 α0 + nα, β0 +
∑n
i=1

1
x1



Asymptotic Distribution - MLE
Score The score or score-function is simply

`′X(θ) =
∑n
i=1 `

′
Xi

(θ).

Information The information or Fisher Information is
In(θ) = Eθ

[
{`′X(θ)}2

]
Lemma Under Regularity Conditions, Eθ[`′X(θ)] = 0, and

In(θ) = Var
[
`′X(θ)

]
= −Eθ

[
`′′X(θ)

]
= −nEθ

[
`′′X1

(θ)
]

Information per Observation I1(θ) = −Eθ
[
`′′X1

(θ)
]

Thrm. Let θ̂n be a maximum likelihood estimator of θ based on
the sample X = (X1, ..., Xn). Then under regularity
conditions,

√
n(θ̂n − θ)

D→ N
[
0,

1

I1(θ)

]
Proof The basic idea is to begin with a Taylor Expansion of

`′Xn
(θ̂n) around θ:

`′Xn
(θ̂n) = `′Xn

(θ) + (θ̂n − θ)`′′Xn
(θ) + ..., where we ignore

higher order terms based on regularity conditions. Observe
that `′Xn

(θ̂n) = 0, so rearrange and multiply by
√
n to get:

√
n(θ̂n − θ) ≈ −

√
n

[
`′Xn

(θ)

`′′
Xn

(θ)

]
=

√
n
[

1
n
`′Xn

(θ)−0
]

− 1
n
`′′
Xn

(θ)
. Note that

Eθ

[
`′Xn

(θ)
]

= 0 and that Var
[
`′Xn

(θ)
]

= I1(θ), then by

CLT:
√
n
[

1
n
`′Xn

(θ)− 0
]
D→ N [0, I1(θ)]. Also observe that

the WLLN implies

− 1
n
`′′Xn

(θ) = − 1
n

∑n
i=1 `

′′
Xi

(θ)
P→ −Eθ

[
`′′X1

(θ)
]

= I1(θ)

Finally, by Slutsky’s Thrm.,
√
n(θ̂n − θ)

D→ N
[
0, 1
I1(θ)

]
since the asymptotic variance is I1(θ)/ [I1(θ)]2 = 1/I1(θ)

Observed Information Define the random variable
Jn = −`′′Xn

(θ̂mlen ). Under regularity conditions, Jn
n

is a

consistent estimator of I1(θ) i.e. Jn
n

P→ I1(θ) for all θ ∈ Θ

Lemma Using Slutsky’s and above theorem:

√
Jn(θ̂mlen − θ) =

√
Jn
n

I1(θ)

√
nI1(θ)(θ̂mlen − θ) D→ N (0, 1)

Asymptotic Efficiency
Asymptotic Variance For estimators which can be categorized

by:
√
n(θ̃n − θ)

D→ N [0, v(θ)] for some function v(θ)...the
asymptotic variance of θ̃n is given by v(θ), even though

Var(θ̃n) =
v(θ)
n

Asymptotic Relative Efficiency If θ̃(1) and θ̃(2) are estimators

of θ such that:
√
n
[
θ̃(1) − θ

]
D→ N

[
0, v(1)(θ)

]
and

√
n
[
θ̃(2) − θ

]
D→ N

[
0, v(2)(θ)

]
, then

AREθ

[
θ̃(1), θ̃(2)

]
=

1/v(1)(θ)

1/v(2)(θ)
=

v(2)(θ)

v(1)(θ)

Interpretation - Sample Sizes Suppose that

AREθ

[
θ̃(1), θ̃(2)

]
= 3, then the distribution of θ̃(1) based

on sample size n is approximately the same as the
distribution of θ̃(2) based on a sample of 3n. In other

words, an estimator that’s 3x more efficient as another,
based on ARE, needs a sample 1/3 of the size in order to
achieve the same precision.

Thrm Let θ̃n be an estimator of θ such that
√
n(θ̃n − θ)

D→ N [0, v(θ)] holds for some v(θ). Then under
regularity conditions, v(θ) ≥ [I1(θ)]−1

Asymptotic Efficiency An estimator for which
√
n(θ̃n − θ)

D→ N [0, v(θ)] holds with v(θ) = [I1(θ)]−1 is
called asymptotically efficient.

Corollary Let θ̂mlen be the MLE estimator of θ based on the
sample Xn = (X1, ..., Xn). Then under regularity

conditions, the estimator θ̂mlen is asymptotically efficient.

Example - Efficiency of Bayes Estimator Let

X1, ..., Xn
i.i.d.∼ Pois(λ), where λ > 0 is unknown. It can be

shown that the posterior mean of λ under a Gamma(a, b)

prior is: λ̂B =
a+
∑n
i=1 Xi
b+n

=
(

n
b+n

)
X̄n +

(
b

b+n

)
a
b

. Now

observe that
√
n(λ̂B − λ) =

√
n
[(

n
b+n

)
X̄n +

(
b

b+n

)
a
b

]
−
√
n
[(

n
b+n

)
λ+

(
b

b+n

)
λ
]

=

(
n

b+ n

)
︸ ︷︷ ︸
→ 1

√
n(X̄n − λ)︸ ︷︷ ︸

D→ N (0, [I1(θ)]−1)

+
√
n

(
b

b+ n

)(a
b
− λ
)

︸ ︷︷ ︸
→ 0

D→ N
[
0, 1
I1(θ)

]
by Slutsky’s Theorem. Thus λ̂B is also

asymptotically efficient.

Hypothesis Testing

Simple A hypothesis is simple if it fully specifies the distribution
of the data (including all unknown parameter values).

Composite A hypothesis is composite if it is not simple.

Examples Let X1, ..., Xn
i.i.d.∼ N (µ, σ2) 1. If H0 : µ = 40 and

H1 : µ = 45 with σ2 known. H0 and H1 are both simple. 2.
If H0 : µ = 40 and H1 : µ 6= 40 with σ2 known. H0 is
simple, and H1 composite. 3. If H0 : µ = 40 and
H1 : µ 6= 40 with σ2 unknown. H0 and H1 are both
composite. 4. If H0 : µ ≤ 40 and H1 : µ > 40. H0 and H1

are both composite. 5. If H0 : (µ, σ2) = (40, 9) and
H1 : (µ, σ2) 6= (40, 9). H0 simple and H1 composite.

Nested Regions Note that if c1 > c2, then Rc1 ⊆ Rc2 .

Good Tests Mathematically, we desire that Pθ(X ∈ R) tends to
be higher for θ ∈ Θ1 than for θ ∈ Θ0. The perfect test
would have Pθ(X ∈ R) = 1 ∀ θ ∈ Θ1

Type I Error A type I error occurs if we reject H0 when it’s
actually true. i.e. if θ ∈ Θ0 and X ∈ R.

Type II Error A type II error occurs if we fail to reject H0

when it’s actually false. i.e. θ ∈ Θ1 but X 6∈ R.

Truth Data Decision Outcome

H0 : θ ∈ Θ0 X 6∈ R Fail to reject Correct Decision
H0 : θ ∈ Θ0 X ∈ R Reject H0 Type I Error
H1 : θ ∈ Θ1 X 6∈ R Fail to reject Type II Error
H1 : θ ∈ Θ1 X ∈ R Reject H0 Correct Decision

Power Function

Power(θ) = Prθ(X ∈ R) =

{
Pθ(type I error) : θ ∈ Θ0

1− Pθ(type II error) : θ ∈ Θ1

Error Trade-Off If we increase c, then we tend to decrease
Pθ(X ∈ Rc) = Pθ [T (X) ≥ c] for all θ. This decreases the
probability of a type I error but increases the probability of
type II error. If we decrease c, then we tend to increase
Pθ(X ∈ R) = Pθ [T (X) ≥ c] for all θ. This decreases the
probability of a type II error but increases the probability
of a type I error.

Level of a test is any α ∈ R such that Power(θ) ≤ α for all
θ ∈ Θ0. (an “upper-bound” for a type I error)

Size of a test is supθ∈Θ0
Power(θ). (max type I error probability)

Achieving Specified Size If the distribution of T (X) is
continuous, there exists a choice of the critical value c that
achieves size α. We want to find a value c ∈ R such that
α = Prθ0 [T (X) ≥ c] = Prθ0 [T (X) > c] = 1− F [T (X)]

θ0
(c).

If the distribution of T (X) is discrete, there may not exist a
c such that Prθ0 [T (X) ≥ c], in which case we typically try
and find a test with size less than α so it still has level α.

P-Values Suppose that we observe X = xobs, then the p-value of
the test with statistic T (X) for the observed data is:
p(xobs) = supθ∈Θ0

Prθ [T (X) ≥ T (xobs)].

Thrm. Let Rc be a rejection region of the form
Rc = {x : T (X) ≥ c}, where c is the smallest number such
that the test associated with Rc has level α. Then
xobs ∈ Rc ⇐⇒ p(xobs) ≤ α.

Proof Suppose that xobs ∈ Rc. Then T (Xobs) ≥ c, so
p(xobs) = supθ∈Θ0

Prθ [T (X) ≥ T (xobs)] ≤
supθ∈Θ0

Prθ [T (X) ≥ c] ≤ α, since the test has level α.
Now suppose instead that xobs 6∈ Rc. Then T (xobs) < c, so
p(xobs) = supθ∈Θ0

Prθ [T (X) ≥ T (xobs)] > α, since
otherwise c would not be the smallest number such that the
test associated with Rc has level α

Corollary An equivalent way to make the final decision in a
hypothesis test is to calculate the p-value p(xobs) for the
observed data xobs and reject H0 at level α if and only if
p(xobs) ≤ α.

Likelihood Ratio Test
General Method Sometimes, it’s not clear which test-statistic

to use. The LRT is a general method based on the
likelihood function, Lx(θ) and the sets Θ0 and Θ1.

Definition Let Θ = Θ0 ∪Θ1. The Likelihood Ratio Statistic is

defined as Λ(X) =
supθ∈Θ0

Lx(θ)

supθ∈ΘLx(θ)
, which rejects H0 if and

only if Λ(X) ≤ k, where k ∈ (0, 1) is chosen to specify the
level of the test. By definition, 0 ≤ Λ(X) ≤ 1.

Simple Null If 1. The null hypothesis is simple (H0 : θ = θ0)

and 2. The MLE θ̂mlen of θ on the parameter space

Θ = Θ0 ∪Θ1 exists, then Λ(X) =
Lx(θ0)

Lx(θ̂mlen )

Example Let X1, ..., Xn
i.i.d.∼ Expo(λ), where λ > 0. H0 : λ = 2

and H1 : λ 6= 2. Then, Lx(λ) = λn exp
(
−λ
∑n
i=1Xi

)
.

Further, λ̂mlen = (X̄n)−1. Then,
Lx(2) = 2n exp

(
−2
∑n
i=1 Xi

)
= exp

[
−n
(
2X̄n − log2

)]
,



and
Lx(λ̂mlen ) =

(
n∑n

i=1 Xi

)n
exp(−n) = exp

[
−n
(
1 + logX̄n

)]
.

The LRT is given by

Λ(X) =
Lx(2)

Lx(λ̂mlen )
=

exp[−n(2X̄n−log2)]
exp[−n(1+logX̄n)]

=

exp
[
n
(
1 + log2 + logX̄n − 2X̄n

)]
=
[
2X̄n exp

(
1− 2X̄n

)]n
.

Ultimately, LRT rejects H0 if and only if[
2X̄n exp

(
1− 2X̄n

)]n ≤ k. Equivalently, reject if

X̄n exp
(
−2X̄n

)
≤ (2e)−1k1/n

Composite Null In this case, finding the numerator of Λ(X)
typically requires first maximizing the likelihood function
subject to the constraints of H0, then evaluating the
likelihood at this point.

Example Let X1, ..., Xn
i.i.d.∼ N (µ, σ2), where µ ∈ R and σ2 > 0

are both unknown. H0 : µ = µ0, H1 : µ 6= µ0 for some
µ0 ∈ R. The numerator of Λ(X) is given by
supσ2>0Lx(µ0, σ2). Observe that
∂
∂σ2 `x(µ0, σ2) = − n

nσ2 + 1
2(σ2)2

∑n
i=1(Xi − µ0)2 = 0 ⇐⇒

σ̃2
0 = 1

n

∑n
i=1(Xi − µ0)2, since this value is indeed a

maximum. Recall the unconstrained MLE of µ and σ2 are
given by: µ̂ = X̄n and σ̂2 = 1

n

∑n
i=1(Xi − X̄n)2. The LRT

is given by:

Λ(X) =
(2πσ̃2

0)−n/2 exp[−(2σ̃2
0)−1∑n

i=1(Xi−µ0)2]
(2πσ̂2)−n/2 exp[−(2σ̂2)−1

∑n
i=1(Xi−µ̂)2]

=

(σ̃2
0)−n/2 exp[−n/2]

(σ̂2)−n/2 exp[−n/2]
=

(
σ̂2

σ̃2
0

)n/2
=

[∑n
i=1(Xi−X̄n)2∑n
i=1(Xi−µ0)2

]n/2
.

Observe that∑n
i=1(Xi − µ0)2 =

∑n
i=1(Xi − X̄n + X̄n − µ0)2 =∑n

i=1(Xi − X̄n)2 + n(X̄n − µ0)2 + 2(X̄n − µ0)
∑n
i=1(Xi −

X̄n) =
∑n
i=1(Xi − X̄n)2 + n(X̄n − µ0)2. Then,

Λ(X) =

[∑n
i=1(Xi−X̄n)2+n(X̄n−µ0)2∑n

i=1(Xi−X̄n)2

]−n/2
=[

1 +
n(X̄n−µ0)2∑n
i=1(Xi−X̄)2

]−n/2
=
[
1 +

(X̄n−µ0)2

σ̂2

]−n/2
=[

1 +
[T (X)]2

n−1

]−n/2
, where T (X) =

|X̄n−µ0|√
σ̂2/(n−1)

=
|X̄n−µ0|√
S2/n

where S2 = 1
n−1

∑n
i=1(Xi − X̄n)2 is the unbiased sample

variance. If H0 true, then T (X) is the distribution of the
absolute value of a Student’s T random variable.

Wald Test
Background Under suitable regularity conditions, we know the

asymptotic distribution of MLE’s is normal:√
In(θ̂mlen )(θ̂mlen − θ) D→ N (0, 1) and also that

√
Jn(θ̂mlen − θ) D→ N (0, 1), where Jn = −`′′Xn

(θ̂mlen )

Definition Test H0 : θ = θ0 against H1 : θ 6= θ0, with size α, by

rejecting H0 if and only if

√
In(θ̂mlen )|θ̂mlen − θ0| ≥ c, where

c is the number such that Pr(|Z| ≥ c) = α for a standard
normal RV Z. Alternatively, reject H0 ⇐⇒√
Jn|θ̂mlen − θ0| ≥ c.

Example Let X1, ..., Xn
i.i.d.∼ Expo(λ), where λ > 0. Test

H0 : λ = 2 against H1 : λ 6= 2. Recall that λ̂mlen = (X̄n)−1.

Note that `′′Xn
(λ) = ∂2

∂λ2

(
nlogλ− λ

∑n
i=1Xi

)
= − n

λ2 . So,

In(λ) = −Eλ[`′′Xn
(λ)] = n/λ2, and hence

In(λ̂mlen ) = n

(λ̂mlen )2
. Similarly,

Jn = −`Xn (λ̂mlen ) = n

(λ̂mlen )2
. The Wald Tests for either

form are identical, in this case:√
In(λ̂mlen )|λ̂mlen − 2| =

√
Jn|λ̂mlen − 2| =√

n

(λ̂mlen )2
|λ̂mlen − 2| =

√
n|1− 2

λ̂mlen

| =
√
n|1− 2X̄n|

Score Test
Background Recall that under regularity conditions,

√
n
[

1
n
`′Xn

(θ)− 0
]

= 1√
n
`′Xn

(θ)
D→ N [0, I1(θ)]. It follows

that 1√
nI1(θ)

`′Xn
(θ) = 1√

In(θ)
`′Xn

(θ)
D→ N(0, 1)

Definition Test H0 : θ = θ0 against H1 : θ 6= θ0, with
approximate size α. Reject H0 ⇐⇒ 1√

In(θ0)
|`′Xn

(θ0)| ≥ c,

where c is the number such that Pr(|Z| ≥ c) = α for a
standard normal RV Z.

Example Let X1, ..., Xn
i.i.d.∼ Expo(λ), where λ > 0. Test

H0 : λ = 2 against H1 : λ 6= 2. The score function is:
`′Xn

(λ) = ∂
∂λ

(
nlogλ− λ

∑n
i=1Xi

)
= n

λ
−
∑n
i=1Xi =

n
(

1
λ
− X̄n

)
, where X̄n = n−1

∑n
i=1 Xi. From previous

example, In(λ) = n/(λ)2. Then, the score test statistic is
given by:

1√
In(2)

|`′Xn
(2)| = 1√

n/4

∣∣n ( 1
2
− X̄n

)∣∣ =
√
n|1− 2X̄n|. The

score test rejects H0 if and only if the statistic is at least as
large as some value, c, determined by the size.

Asymptotic Likelihood Ratio Tests
Thrm. Let Λ(Xn) be the likelihood ratio test for testing

H0 : θ = θ0 against H1 : θ 6= θ0, based on sample Xn. Then

under regularity conditions: −2logΛ(Xn)
D→ χ2

1, if θ = θ0.

Proof Let θ̂mlen denote the MLE of θ. A Taylor Expansion of

`Xn (θ0) around `Xn (θ̂mlen ):

`Xn (θ0) = `Xn (θ̂n) + `′Xn
(θ̂n)(θ0 − θ̂n) +

1

2
`′′Xn

(θ0 − θ̂n)2 + ...

= `Xn (θ̂n) +
1

2
`′′Xn

(θ0 − θ̂n)2 + ...

since `′Xn
(θ̂n) = 0. Further, the regularity conditions allow

us to ignore higher-order terms. Now, observe that

−2logΛ(Xn) = −2log

[
LXn (θ0)

LXn (θ̂n)

]
=

−2
[
`Xn (θ0)− `Xn (θ̂n)

]
≈ −`′′Xn

(θ̂n)(θ0 − θ̂n)2 by the

Taylor Expansion. Then, −2logΛ(Xn) ≈
−`′′Xn

(θ̂n)(θ0 − θ̂n)2 = Jn(θ̂n − θ0)2 =
[√
Jn(θ̂n − θ0)

]2
. If

the true value of θ = θ0, then
√
Jn|θ̂n − θ|

D→ N (0, 1) =⇒
[√
Jn|θ̂n − θ|

]2 D→ χ2
1, using

continuous mapping thrm. for convergence in distribution.

Rejection Region A test of H0 : θ = θ0 against H1 : θ 6= θ0 with
approximate size α is to reject H0 ⇐⇒ −2logΛXn ≥ C,
where C is the number such that Pr(W ≥ C) = α for a χ2

1
R.V. W, or equivalently, the number such that
Pr(|Z| ≥

√
C) = α for a N (0, 1) R.V. Z.

Example Let X1, ..., Xn
i.i.d.∼ Expo(λ), where λ > 0. Test

H0 : λ = 2 against H1 : λ 6= 2. Recall the LRT is:
Λ(Xn) = [2X̄n exp(1− 2X̄n)]n. Note that
−2logΛ(Xn) = −2n[1 + log(2X̄n)− 2X̄n]. To obtain LRT
with size α, reject H0 ⇐⇒ test statistic is at least as large
as some critical value C. To obtain size α = 0.05, take√
C ≈ 1.96, hence C ≈ 3.84.

Summary of Asymptotic Tests

Similarities The Wald Test, Score Test, and LRT provide
different ways to construct hypothesis tests of H0 : θ = θ0
against H1 : θ 6= θ0, with approximate size α for large n.

Basis: Wald is based on the difference between θ0 and θ̂mlen .
Score is based on the difference between the slope of the
log-likelihood at θ0 against θ̂mlen . LRT is based on the

difference between the likelihood at θ0 against θ̂n.

Computation: Wald, when based on Jn, only requires the
behavior of the log-likelihood at and around it’s global max,
θ̂mlen . Score only involves the behavior of the log-likelihood
at and around θ0. LRT involves behavior of likelihood at
both θ0 and θ̂mlen .

Reparametrization Score and LRT invariant, but Wald isn’t.

Confidence Intervals
Definition A Confidence Level of a confidence set C(X) for a

parameter θ ∈ Θ is a number γ ≥ 0 such that
Prθ [θ ∈ C(X)] ≥ γ for all θ ∈ Θ.

Thrm. For every θ0 ∈ Θ, let Rθ0 be the rejection region of a
hypothesis test of H0 : θ = θ0 against H1 : θ 6= θ0, with level
α. Then C(X) = {θ0 ∈ Θ : X 6∈ Rθ0} is a confidence set for
θ with confidence level 1− α.

Proof For every θ ∈ Θ, Prθ [θ ∈ C(X)] = Prθ(X 6∈ Rθ) =
1− Prθ(X ∈ Rθ) ≥ 1− alpha.

Example Let X1, ..., Xn
i.i.d.∼ N (µ, σ2), where µ ∈ R and σ2 > 0

are both unknown. Let α ∈ (0, 1). Begin by finding a test of
H0 : µ = µ0 against H1 : µ 6= µ0 with level α. The LRT of

these hypotheses is to reject H0 ⇐⇒ |X̄n−µ0|√
S2/n

≥ c. Then a

confidence set for µ with confidence level 1− α is the set of

all µ0 ∈ R such that
|X̄n−µ0|√
S2/n

< c

Wald Confidence Interval The simplest asymptotic CI. Test
H0 : θ = θ0 against H1 : θ 6= θ0 reject

H0 ⇐⇒
√
In(θ̂mlen )|θ̂mlen − θ0| ≥ c, or alternatively√

Jn(θ̂mlen )|θ̂mlen − θ0| ≥ c, where c is the number such that

Pr(|Z| ≥ c) = α for Z ∼ N (0, 1). Our test fails to reject

H0 ⇐⇒
{
θ0 ∈ Θ : θ̂n − c√

Jn(θ̂)
< θ0 < θ̂n + c√

Jn(θ̂)

}
Example Let X1, ..., Xn

i.i.d.∼ (λ), where λ > 0 unknown. Let
α ∈ (0, 1). We found earlier that both versions of Wald

reject H0 ⇐⇒
√

n

λ̂2
n

|λ̂n − λ0| ≥ c. The Wald CI with

approximate confidence level 1− α is the set:{
λ0 > 0 : λ̂n − c

√
λ̂2
n
n
< λ0 < λ̂n + c

√
λ̂2
n
n

}
. Note the

restriction that λ0 > 0 ensures the CI doesn’t spill over the
parameter space.

Score Confidence Interval A score test of H0 : θ = θ0 against
H1 : θ 6= θ0 rejects H0 ⇐⇒ 1√

In(θ0)
|`′Xn

(θ0)| ≥ c. The test

fails to reject H0 ⇐⇒
{
θ0 ∈ Θ : 1√

In(θ0)
|`′Xn

(θ0)| < c

}
.

This is a Score Confidence Set.


