Santucci's Stats 200 Notes

Basic Probability

Conditional Expectation $E[g(X)|Y=y] = \int_{-\infty}^{\infty} g(x) f^{(X|Y)}(x|y) dx$

Conditional Variance

 $Var[g(X)|Y = y] = E[{g(X)}^2|Y = y] - {E[g(X)|Y = y]}^2$

Total Expectation $E[g(X)] = E\{E[g(X)|Y]\}$

Total Variance $Var(X) = E[Var(g(X)|Y)] + Var(E[g(X)|Y])$

Convergence Concepts

- **Convergence in Probability** $\{X_n : n \ge 1\}$ converges in probability to *X* if ∀ $\epsilon > 0$: $Pr(|X_n X| > \epsilon) \to 0$.
- Convergence in Distribution $\{X_n : n \geq 1\}$ converges in distribution to X if $F^{(X_n)}(x) \to F^{(X)}(x)$ at every point where F is continuous.

Thrm. If $X_n \stackrel{P}{\to} X$, then $X_n \stackrel{D}{\to} X$.

Thrm. Let $\alpha \in \mathbb{R}$ be a constant. Then $X_n \stackrel{P}{\to} \alpha \iff X_n \stackrel{D}{\to} \alpha$.

Showing Convergence in Probability Options: show (1) directly through definition, (2) if convergence to a constant, try showing convergence in distribution, or (3) use thrm.: if $E[X_n] \to \alpha \in \mathbb{R}$

and $Var(X_n) \to 0, \implies X_n \stackrel{P}{\to} \alpha$.

Showing Convergence in Distribution Options: show (1) Convergence in Probability, (2) Convergence in Distribution through CDF's, or (3) CLT [requires i.i.d. and sums/average].

Continuous Mapping Theorems

Thrm. If $X_n \stackrel{P}{\to} \alpha$ for some constant $\alpha \in \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ is continuous at α , then $g(X_n) \stackrel{P}{\to} g(\alpha)$ (This is also true if $X_n \stackrel{D}{\to} \alpha$, using the above thrm.)

Thrm. If $X_n \stackrel{P}{\to} X$ and $g : \mathbb{R} \to \mathbb{R}$ is continuous, then $g(X_n) \stackrel{P}{\to} g(X)$

Thrm. If $X_n \stackrel{D}{\to} X$ and $g : \mathbb{R} \to \mathbb{R}$ is continuous, then $g(X_n) \stackrel{D}{\to} g(X)$

Slutsky's Theorem

If $X_n \stackrel{D}{\to} X$ and $Y_n \stackrel{P}{\to} \alpha$, where $\alpha \in \mathbb{R}$ is a constant, then $X_n + Y_n \stackrel{D}{\to} X + \alpha$ and $X_n Y_n \stackrel{D}{\to} aX$.

Weak Law of Large Numbers

Let $\{X_n : n \geq 1\}$ be a sequence of i.i.d. R.V.'s with $E[|X_1|] < \infty$. Let $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$. Then, $\bar{X}_n \stackrel{P}{\rightarrow} E[X_1]$.

Proof Let
$$
X_1, \ldots X_n
$$
 be i.i.d (μ, σ^2) , with $\sigma^2 < \infty$, Chebyschev
implies $Pr(|\bar{X}_n - \mu| < \epsilon) \le 1 - \frac{\sigma^2}{n\epsilon^2}$. Hence,
 $\lim n \to \infty Pr(|\bar{X}_n - \mu| < \epsilon) = 1$.

Central Limit Theorem

The asymptotic distribution of an average of i.i.d. R.V.'s is a normal distribution, regardless of the individual random variables themselves.

Thrm. Let $\{X_n : n \geq 1\}$ be a sequence of i.i.d. R.V.'s with $Var(X_1) < \infty$. Let $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$. Then

$$
\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \stackrel{D}{\rightarrow} \mathcal{N}(0, 1)
$$

where $\mu = E[X_1]$ and $\sigma^2 = Var(X_1)$.

Delta Method

Basic idea: $g(Y_n) - g(\alpha) \approx g'(\alpha)(Y_n - \alpha)$

Thrm. Let ${Y_n : n \geq 1}$ be a sequence of random variables such that $\sqrt{n}(Y_n - \alpha) \stackrel{\overline{D}}{\rightarrow} Z$ for some random variable Z and some

constant $\alpha \in \mathbb{R}$. Let $g : \mathbb{R} \to \mathbb{R}$ be continuously differentiable at α . Then, √

$$
\sqrt{n}[g(Y_n) - g(\alpha)] \stackrel{D}{\to} g'(\alpha)Z
$$

Proof Formally, $\sqrt{n}[g(Y_n) - g(\alpha)] = g'(Y_n *) \sqrt{n}(Y_n - \alpha)$ for some Y_n* between α and Y_n . Note that for any $\epsilon > 0$, $Pr(|Y_n * -\alpha| > \epsilon) \leq Pr(|Y_n - \alpha| > \epsilon) \stackrel{P}{\to} 0$ since $Y_n \stackrel{P}{\to} \alpha$

(through WLLN). Then, $Y_n * \overset{P}{\to} \alpha$, so $g'(Y_n *) \overset{P}{\to} g'(\alpha)$ by our

first continuous mapping theorem. Since $\sqrt{n}[Y_n - \alpha] \stackrel{D}{\rightarrow} Z$, the result follows by Slutsky's theorem.

Random Vectors

Expectation $E[\boldsymbol{X}] = [E[X_1], ..., E[X_n]]$ Variance $Var(\boldsymbol{X}) = E[\{\boldsymbol{X} - E[\boldsymbol{X}]\} \{\boldsymbol{X} - E[\boldsymbol{X}]\}^{\mathsf{T}}] =$ $E[\boldsymbol{X}\boldsymbol{X}^{\intercal}] - E[\boldsymbol{X}]E[\boldsymbol{X}]^{\intercal}$ Linearity $E[\alpha + BX + CY] = \alpha + BE[X] + CE[Y]$ $Var(\alpha + BX) = BVar(X)B^{\mathsf{T}}$

Multivariate Normal Distribution

- **Definition** Let **Z** be a random vector with $\boldsymbol{\theta} = E[\mathbf{Z}]$ and $V = Var(Z)$. Z is called *multivariate normal*, denoted $\mathbf{Z} \sim N_p(\hat{\boldsymbol{\theta}}_p, \mathbf{V}_p) \iff \boldsymbol{\alpha}^\mathsf{T} \mathbf{Z}$ has a univariate normal distribution for all $\alpha \in \mathbb{R}^p$. The following properties hold:
- **PDF** If V is non-singular (invertible), then

$$
f(\boldsymbol{z}) = \frac{1}{(2\pi)^{p/2} det \boldsymbol{V}^{1/2}} \exp \left[-1/2(\boldsymbol{z} - \boldsymbol{\theta})^{\mathsf{T}} \boldsymbol{V}^{-1}(\boldsymbol{z} - \boldsymbol{\theta}) \right]
$$

where det denotes determinant.

Independence $Z_i \perp \!\!\! \perp Z_j \iff V_{ij} = Cov(Z_i, Z_j) = 0.$

- **Standard Normal** Let $\mathbf{0}_p$ Denote a zeros vector length p, and \mathbf{I}_p denotes the $p \times p$ identity matrix. $N_p(\mathbf{0}_p, \mathbf{I}_p)$ is called the p-variate standard normal distribution.
- **Lemma** Let A be a $p \times p$ matrix that is orthogonal $(AA^{\mathsf{T}} = A^{\mathsf{T}} A = I_p)$, and let $Z \sim \mathcal{N}_p(\mathbf{0}_p, I_p)$. Then $\boldsymbol{AZ} \sim \mathcal{N}_p(\boldsymbol{0}_p, \boldsymbol{I}_p).$
- **Proof** For any vector $\mathbf{b} \in \mathbb{R}^p$, the random vector $\mathbf{b}^\intercal A \mathbf{Z} = (A^\intercal \mathbf{b})^\intercal \mathbf{Z}$ has a univariate normal since Z is multivariate normal. Then AZ is multivariate normal. Now simply note that $E[\mathbf{A}\mathbf{Z}] = \mathbf{A}E[\mathbf{Z}] = \mathbf{0}_p$ and that $Var(\mathbf{A}\mathbf{Z}) = \mathbf{A}\mathbf{I}_p\mathbf{A}^\intercal = \mathbf{A}\mathbf{A}^\intercal = \mathbf{I}_p$ \Box

Sample Variance

 \Box

Let
$$
X_1, ..., X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)
$$
, where $n \ge 2$. $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ where $\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^n}{n})$ and

$$
S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{i})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - (\bar{X}_{i})^{2} \right]
$$

Chi-Squared Distribution

Let $\mathbf{Z} \sim N_p(\mathbf{0}_p, \mathbf{I}_p)$, then $\mathbf{Z}^\mathsf{T} \mathbf{Z} = \sum_{i=1}^p Z_i^2$ is called a *chi-squared* distribution with p-degrees of freedom, with expectation p and variance 2p. Recall: $Var(Z_i) = 1 = E[Z_i^2]$

Lemma The χ_1^2 distribution is the Gamma $(1/2, 1/2)$ distribution.

Lemma Let $U_1, ..., U_n$ be independent with $U_i \sim Gamma(\alpha_i, \beta)$ for each $i \in \{1, ..., n\}$. Then $\sum_{i=1}^n U_i \sim Gamma(\sum_{i=1}^n \alpha_i, \beta)$.

Joint Dist.: Sample Mean/Variance

- **Thrm.** Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $n \geq 2$. Then $\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ and $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$. Further, \bar{X}_n and S^2 are independent.
- **Proof** Sufficient to prove for $\mu = 0$ and $\sigma^2 = 1$. Let $\mathbf{X} = (X_1, ..., X_n) \sim N_n(\mathbf{0}_n, \mathbf{I}_n)$. Now let A be and orthogonal $p \times p$ matrix, for which all the elements in the first row are $\frac{1}{\sqrt{n}}$, constructed via Graham-Schmidt. Let $\mathbf{Y} = (Y_1, ..., Y_n) = \mathbf{A}\mathbf{X}$. By a previous lemma, $Y \sim N_n(\mathbf{0}_n, \mathbf{I}_n)$, so the sum of squares of its last $n-1$ elements is $\sum_{i=2}^n Y_i^2 \sim \chi_{n-1}^2$. Note that the first element is $Y_1 = \sqrt{n} \bar{X}_n$, so we may write:
 $\sum_{i=2}^n Y_i^2 = \sum_{i=1}^n Y_i^2 - Y_1^2 = \mathbf{X}^\mathsf{T} \mathbf{A}^\mathsf{T} \mathbf{A} \mathbf{X} - n(\bar{X}_n)^2 =$ $\overline{X^{\dagger}X} - n(\overline{X_n})^2 = \sum_{i=1}^n X_i^2 - n(\overline{X}_n)^2 = (n-1)S^2$ Finally, note that $Y_1, ..., Y_n$ are all independent, so Y_1 and $\sum_{i=2}^n Y_i^2$ are independent.
- **Expectation** The above theorem tells us that $E[(\frac{n-1}{\sigma^2})S^2] = n-1$, and thus $E[S^2] = \sigma^2$
- Without Normality Suppose $X_1, ..., X_n$ are i.i.d with $E[X_1] = \mu$ and $Var(X_1) = \sigma^2$, but suppose their distribution is not normal. We still have $E[\bar{X}_n] = \mu$, and $Var(\bar{X}_n) = \frac{\sigma^2}{n}$, and $E[S^2] = \sigma^2$. However, \bar{X}_n is not necessarily normal (although it is approximately normal for large n by CLT), and the distribution of $\left(\frac{n-1}{\sigma^2}\right)S^2$ is not necessarily chi-squared. Further, \bar{X}_n and S^2 are not necessarily independent.

Student's T-Distribution

- **Definition** Let $Z \sim \mathcal{N}(0, 1)$ and $U \sim \chi_p^2$ be independent R.V.'s, the distribution of $\frac{Z}{\sqrt{U/p}}$ is student's t-distribution with p-degrees of freedom. It is centered around 0.
- **Thrm.** Let $X_1, ..., X_n \stackrel{i.i.d}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $n \geq 2$, then $\frac{\bar{X}_n - \mu}{\sqrt{S^2/n}} \sim t_{n-1}.$
- **Proof** Let $Z = \frac{\bar{X}_n \mu}{\sqrt{\sigma^2/n}}$ and $U = (n-1)S^2/\sigma^2$, by our last theorem $Z \sim \mathcal{N}(0, 1)$ and $U \sim \chi^2_{n-1}$, and they are independent. The result follows by definition since $T = \frac{Z}{\sqrt{U/(n-1)}}$ \Box
- **Lemma** Let $U_n \sim \chi_n^2$ for every $n \geq 1$. Then $U_n/n \stackrel{P}{\to} 1$ as $\lim_{n \to \infty} P$ **roof:** Let $Z_1, ..., Z_n \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$, and let $U_n = \sum_{i=1}^n Z_i^2$. $U_n/n \stackrel{P}{\to} 1$ by WLLN, therefore $U_n/n \stackrel{D}{\to} 1$.
- **Thrm.** Let $T_n \sim t_n$ for every $n \geq 1$. Then $T_n \stackrel{D}{\to} \mathcal{N}(0, 1)$ as $\lim_{\mathcal{D}} n \to \infty$. **Proof:** Let $Z \sim \mathcal{N}(0, 1)$ and $U \sim \chi_n^2$, and let $Z \perp\!\!\!\perp U$. The results follow using the Continuous Mapping Thrm., the above lemma, and Slutsky's Thrm. \Box

Maximum Likelihood Estimation

- Likelihood Describes the probability of observing data given certain parameter values. It is not a "pdf" of θ given the data x.
- **Thrm.** Let $\hat{\theta}^{mle}$ be a maximum likelihood estimator of θ over the parameter space Θ, and let g be a function that with domain Θ and image Ξ. Then $\hat{\xi}^{mle} = g(\hat{\theta}^{mle})$ is a maximum likelihood estimator of $\xi = g(\theta)$ over the parameter space Ξ .
- **Example** Let $X_1, ..., X_n$ ^{i.i.d.} $\mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ are both unknown. Find the MLE of both parameters.

$$
L_{\mathbf{x}}(\mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(X_i - \mu)^2}{2\sigma^2}\right] =
$$

\n
$$
(2\pi\sigma^2)^{-n/2} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right], \text{ therefore,}
$$

\n
$$
\ell_{\mathbf{x}}(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2.
$$

- Differentiating w.r.t. each parameter yields: $\frac{\partial}{\partial \rho} \ell_x(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n x_i - \frac{n\mu}{\sigma^2} = \frac{n}{\sigma^2} (\bar{x_n} - \mu)$, and
 $\frac{\partial}{\partial \sigma^2} \ell_x(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 =$ $\frac{1}{2(\sigma^2)^2} \sum_{i=1}^n [(x_i - \mu)^2 - \sigma^2].$ Setting both sides to zero, first note that: $\frac{\partial}{\partial \mu} \ell_x(\mu, \sigma^2) = \frac{n}{\sigma^2} (\bar{x} - \mu) = 0 \implies \bar{x} = \mu.$ Substitute $\mu = \bar{x}$ in our other partial derivative and set it to 0:
 $\frac{\partial}{\partial \sigma^2} \ell_{\mathbf{x}}(\mu, \sigma^2) = \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n \left[(x_i - \mu)^2 - \sigma^2 \right] = 0 \implies \sigma^2 =$ $n^{-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \left(\frac{n-1}{n} S^2\right)$
- **Tips 1.** Check 2^{nd} derivative. **2.** Check Boundaries. **3.** Ensure estimator's max/min are within parameter space.

Bayesian Estimation

- Conjugate Priors A family of distributions is called conjugate for a particular likelihood function if choosing a prior from that family leads to a posterior that is also from that family.
- **Example** Let $X_1, ..., X_n | \mu \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ is unknown but $\sigma^2 > 0$ is known. Let the prior on μ be $\mu \sim \mathcal{N}(\xi, \tau^2)$, where $\xi \in \mathbb{R}$ and $\tau^2 > 0$ are known. To find the posterior of μ , we use the shortcut method, ignoring anything that is not a function 1

of
$$
\mu
$$
: $L_{\mathbf{x}}(\mu)\pi(\mu) \propto \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2\right] \exp\left[-\frac{(\mu-\xi)^2}{2\tau^2}\right]$
\n $\propto \exp\left[\frac{\mu}{\sigma^2}\sum_{i=1}^n x_i - \frac{n\mu^2}{2\sigma^2} - \frac{\mu^2}{2\tau^2} + \frac{\epsilon\mu}{\tau^2}\right]$
\n $\propto \exp\left[-\frac{(n\tau^2 + \sigma^2)\mu^2}{2\sigma^2\tau^2} + \frac{(n\pi\tau^2 + \epsilon\sigma^2)\mu}{\sigma^2\tau^2}\right]$
\n $\propto \exp\left[-\frac{1}{2}\left(\frac{n\tau^2 + \sigma^2}{\sigma^2\tau^2}\right)\left(\mu^2 - 2\mu\frac{n\tau^2 \bar{x} + \sigma^2 \xi}{n\tau^2 + \sigma^2}\right)\right]$
\n $\propto \exp\left[-\frac{1}{2}\left(\frac{n\tau^2 + \sigma^2}{\sigma^2\tau^2}\right)\left(\mu - \frac{n\tau^2 \bar{x} + \sigma^2 \xi}{n\tau^2 + \sigma^2}\right)^2\right]$, which we recognize as another normal distribution. Thus, the posterior distribution of μ given $\mathbf{X} = \mathbf{x}$ is: $\mu|\mathbf{x} \sim N\left(\frac{n\tau^2 \bar{x} + \sigma^2 \xi}{n\tau^2 + \sigma^2}, \frac{\sigma^2 \tau^2}{n\tau^2 + \sigma^2}\right)$, which can be rewritten as $\mu|\mathbf{x} \sim N\left[\frac{\frac{1}{\tau^2} + \frac{1}{\tau^2\tau^2}}{\frac{1}{\tau^2} + \frac{1}{\sigma^2\tau^2\tau^2}}\frac{1}{n\tau^2 + \frac{1}{\sigma^2\tau^2}}\right]$

Estimators - Finite Sample

- **Bias** The bias of an estimator $\hat{\theta}$ of a parameter θ is $Bias_{\theta}(\hat{\theta}) = E_{\theta}(\hat{\theta}) - \theta$. The estimator $\hat{\theta}$ is unbiased if $Bias_{\theta}(\hat{\theta}) = 0$ for all θ in the parameter space Θ .
- **Example** Let $X_1, ..., X_n$ be i.i.d. random variables such that both $\mu = E_{(\mu,\sigma^2)}(X_1)$ and $\sigma^2 = Var_{(\mu,\sigma^2)}(X_1)$ are finite, and

Conjugate Prior Examples

suppose $n \geq 2$. Let \overline{X} and S^2 be the usual sample mean and sample variance, respectively. Then:

$$
E_{(\mu,\sigma^2)}(S^2) = \frac{1}{n-1} E_{(\mu,\sigma^2)} (\sum_{i=1}^n X_i^2 - n\bar{X}^2) =
$$

$$
\frac{1}{n-1} \left[n(\mu^2 + \sigma^2) - n(\mu^2 + \frac{\sigma^2}{n}) \right] = \frac{n-1}{n-1} \sigma^2 = \sigma^2.
$$

- Example $Bias_{(\mu,\sigma^2)}\left[\frac{(n-1)S^2}{n}\right] = E_{(\mu,\sigma^2)}\left[\frac{(n-1)S^2}{n}\right] \sigma^2 =$ $\frac{(n-1)\sigma^2}{n} - \sigma^2 = -\frac{\sigma^2}{n}$, which is negative $\forall \sigma^2 > 0$. \implies This estimator tends to underestimate the true value of σ^2 , on
	- average.
- Variance It can also be useful to consider the variance of an estimator.

Example Suppose
$$
X_1, ..., X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)
$$
. Then: $Var_{(\mu, \sigma^2)}(S^2) =$
\n
$$
\left(\frac{\sigma^2}{n-1}\right)^2 Var_{(\mu, \sigma^2)}\left[\frac{(n-1)S^2}{\sigma^2}\right] = \left(\frac{\sigma^2}{n-1}\right)^2 [2(n-1)] = \frac{2(\sigma^2)^2}{n-1},
$$
\nnoting that $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$ since
\n
$$
X_1, ..., X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)
$$
. It follows that:
\n
$$
Var_{(\mu, \sigma^2)}\left[\left(\frac{n-1}{n}\right)S^2\right] = \left(\frac{n-1}{n}\right)^2 Var_{(\mu, \sigma^2)}(S^2)
$$
, which is less than the variance of S^2 .

- Trade-off Usually, when comparing sensible estimators, those with larger bias often have smaller variance. To get a better idea of how to compare estimators, use Mean Squared Error.
- **Mean Squared Error** The M.S.E. of an estimator $\hat{\theta}$ of a parameter θ is $MSE_{\theta}(\hat{\theta}) = E_{\theta}[(\hat{\theta} - \theta)^2].$
- **Thrm.** Let $\hat{\theta}$ be an estimator of theta. Then, $MSE_{\theta}(\hat{\theta}) = [Bias_{\theta}(\hat{\theta})]^2 + Var_{\theta}(\hat{\theta}).$

Proof $MSE_{\theta}(\hat{\theta}) = E_{\theta}[(\hat{\theta} - \theta)^2] = [E_{\theta}(\hat{\theta} - \theta)]^2 + Var_{\theta}(\hat{\theta} - \theta) =$ $\left[Bias_{\theta}(\hat{\theta})\right]^{2}+Var_{\theta}(\hat{\theta})$

- **Thrm** Let $\gamma_w(\hat{\theta}) = \int_{\Theta} MSE_{\theta}(\hat{\theta})w(\theta) d\theta$. Let $\hat{\theta}^B$ denote the posterior mean of θ under the prior $\pi(\theta) = w(\theta)$. Then, $\gamma_w(\hat{\theta}^B) \leq \gamma_w(\hat{\theta})$ for any other estimator $\hat{\theta}$ of θ .
- Finding Unbiased Estimators No ironclad solution: (1) Look at $E[X]$ and $Var(X)$, play with $E[X]$, $E[X^2]$ and $E[X]^2$ to get something that looks like we're trying to estimate. (2) Solve for MLE. Check it's bias, adjust. (3) Find a function that

"combines" with our pdf. E.g. $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \text{Expo}(\lambda)$. One attempt (which fails) is to try: e^{-cx} , via $E[e^{-cx}]$

Showing Unbiased Estimators fail to exist Estimators map observed data to estimates. Let t_i be the value our estimator takes on when we observe $x = i$. Using LOTUS,

 $E_{\theta}[\hat{\theta}] = \sum_{i=1}^{n} t_i Pr(X = i)$. Sometimes, the form of this expectation implies we can't be unbiased.

Estimators - Consistency

- **Definition** An estimator $\hat{\theta}_n$ is a consistent estimator of a parameter θ if $\hat{\theta}_n \stackrel{P}{\rightarrow} \theta$ for all $\theta \in \Theta$.
- **Lemma** Suppose $\mu = E_{\mu}(X_1)$ is finite, and let \bar{X}_n be the usual sample mean of an i.i.d. sample $X_1, ..., X_n$. If α_n is any sequence such that $\alpha_n \to 1$, then $\alpha_n \bar{X}_n$ is a consistent estimator of μ .
- **Thrm.** If $E(X_n) \to \alpha \in \mathbb{R}$ and $Var(X_n) \to 0$, then $X_n \stackrel{P}{\to} \alpha$, via Chebyschev's Inequality and the definition of convergence in probability. These conditions are sufficient, but not necessary!
- **Corollary** If $E_{\theta}(\hat{\theta}_n) \to \theta$ and $Var_{\theta}(\hat{\theta}_n) \to 0$ for all $\theta \in \Theta$, then $\hat{\theta}_n$ is a consistent estimator of θ . These conditions are sufficient, but not necessary!.
- **Regularity Conditions 1.** The data $X = (X_1, ..., X_n)$ is an i.i.d.
	- sample with likelihood $L_{\mathbf{x}}(\theta) = \prod_{i=1}^{n} L_{x_i}(\theta)$ 2. The parameter space Θ is an open subset of \mathbb{R} (note that $\Theta = \mathbb{R}$ is allowed) **3.**
The set $\chi = \{x_1 \in \mathbb{R} : L_{x_1}(\theta) > 0\}$ (called the support) does not depend on θ . **4.** If $L_{x_1}(\theta_1) = L_{x_1}(\theta_2)$ for all $x_1 \in \chi$ (except possibly for some set of values with probability zero), then $\theta_1 = \theta_2$. **5.** The likelihood $L_{x_1}(\theta)$ must satisfy certain
- **Thrm** Let $\hat{\theta_n}$ be the MLE of θ based on the sample $\mathbf{X}_n = (X_1, ..., X_n)$. Then under the regularity conditions above, $\hat{\theta}_n$ is a consistent estimator of θ .

Bias Vs. Consistency

Let $Y_1, ..., Y_n \stackrel{i.i.d.}{\sim} Bern(\theta)$. Example estimators, $\hat{\theta}$, for θ :

smoothness conditions as a function of θ .

Example Suppose that $\hat{\theta}$ is an unbiased estimator for θ . Is $\hat{\theta}^2$ unbiased for θ^2 ? **No.** Although $E_\theta[\hat{\theta}] = \theta$, $E_{\theta}[\hat{\theta}^2] = (E_{\theta}[\hat{\theta}])^2 + Var_{\theta}(\hat{\theta}) = \theta^2 + Var(\hat{\theta}^2) \geq \theta^2$, where

 $Var_{\theta}(\hat{\theta})$ non-zero unless our estimator is a constant.

Asymptotic Distribution - MLE

Score The score or score-function is simply

 $\ell'_{\boldsymbol{X}}(\theta) = \sum_{i=1}^n \ell'_{X_i}(\theta).$

Information The information or Fisher Information is $I_n(\theta) = E_\theta \left[\{ \ell'_{\mathbf{X}}(\theta) \}^2 \right]$

Lemma Under Regularity Conditions, $E_{\theta}[\ell'_{\mathbf{X}}(\theta)] = 0$, and

$$
I_n(\theta) = \text{Var}\left[\ell'_\mathbf{X}(\theta)\right] = -E_\theta\left[\ell''_\mathbf{X}(\theta)\right] = -nE_\theta\left[\ell''_{X_1}(\theta)\right]
$$

Information per Observation $I_1(\theta) = -E_\theta \left[\ell_{X_1}^{\prime\prime}(\theta) \right]$

Thrm. Let $\hat{\theta}_n$ be a maximum likelihood estimator of θ based on the sample $\mathbf{X} = (X_1, ..., X_n)$. Then under regularity conditions,

$$
\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{D}{\rightarrow} \mathcal{N}\left[0, \frac{1}{I_1(\theta)}\right]
$$

Proof The basic idea is to begin with a Taylor Expansion of $\ell'_{\boldsymbol{X}_n}(\hat{\theta}_n)$ around θ :

 $\ell'_{\mathbf{X}_n}(\hat{\theta}_n) = \ell'_{\mathbf{X}_n}(\theta) + (\hat{\theta}_n - \theta)\ell''_{\mathbf{X}_n}(\theta) + \dots$, where we ignore higher order terms based on regularity conditions. Observe mgher order terms based on regularity conditions. Observe
that $\ell'_{\mathbf{X}_n}(\hat{\theta}_n) = 0$, so rearrange and multiply by \sqrt{n} to get:

$$
\sqrt{n}(\hat{\theta}_n - \theta) \approx -\sqrt{n} \left[\frac{\ell'_{\mathbf{X}_n}(\theta)}{\ell'_{\mathbf{X}_n}(\theta)} \right] = \frac{\sqrt{n} \left[\frac{1}{n} \ell'_{\mathbf{X}_n}(\theta) - 0 \right]}{-\frac{1}{n} \ell'_{\mathbf{X}_n}(\theta)}.
$$
 Note that
\n
$$
E_{\theta} \left[\ell'_{\mathbf{X}_n}(\theta) \right] = 0 \text{ and that } \text{Var} \left[\ell'_{\mathbf{X}_n}(\theta) \right] = I_1(\theta), \text{ then by}
$$
\n
$$
\text{CLT: } \sqrt{n} \left[\frac{1}{n} \ell'_{\mathbf{X}_n}(\theta) - 0 \right] \xrightarrow{D} \mathcal{N} \left[0, I_1(\theta) \right].
$$
 Also observe that the WLLN implies

 $-\frac{1}{n}\ell''_{{\boldsymbol{X}}_n}(\theta) = -\frac{1}{n}\sum_{i=1}^n\ell''_{{X}_i}(\theta) \stackrel{P}{\to} -E_\theta\left[\ell''_{{\boldsymbol{X}}_1}(\theta)\right] = I_1(\theta)$ Finally, by Slutsky's Thrm., $\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{D}{\rightarrow} \mathcal{N} \left[0, \frac{1}{I_1(\theta)}\right]$ since the asymptotic variance is $I_1(\theta)/[I_1(\theta)]^2 = 1/I_1(\theta)$

Observed Information Define the random variable

 $J_n = -\ell_{\boldsymbol{X}_n}^{\prime\prime}(\hat{\theta}_n^{mle}).$ Under regularity conditions, $\frac{J_n}{n}$ is a consistent estimator of $I_1(\theta)$ i.e. $\frac{J_n}{n} \stackrel{P}{\to} I_1(\theta)$ for all $\theta \in \Theta$

Lemma Using Slutsky's and above theorem:

$$
\sqrt{J_n}(\hat{\theta}_n^{mle} - \theta) = \sqrt{\frac{J_n}{I_1(\theta)}}\sqrt{nI_1(\theta)}(\hat{\theta}_n^{mle} - \theta) \overset{D}{\rightarrow} \mathcal{N}(0, 1)
$$

Asymptotic Efficiency

- Asymptotic Variance For estimators which can be categorized by: $\sqrt{n}(\tilde{\theta}_n - \theta) \stackrel{D}{\rightarrow} \mathcal{N}[0, v(\theta)]$ for some function $v(\theta)$...the asymptotic variance of $\tilde{\theta}_n$ is given by $v(\theta)$, even though $\text{Var}(\tilde{\theta}_n) = \frac{v(\theta)}{n}$
- Asymptotic Relative Efficiency If $\tilde{\theta}^{(1)}$ and $\tilde{\theta}^{(2)}$ are estimators of θ such that: $\sqrt{n} \left[\tilde{\theta}^{(1)} - \theta \right] \stackrel{D}{\rightarrow} \mathcal{N} \left[0, v^{(1)}(\theta) \right]$ and $\sqrt{n} \left[\tilde{\theta}^{(2)} - \theta \right] \stackrel{D}{\rightarrow} \mathcal{N} \left[0, v^{(2)}(\theta) \right],$ then $ARE_{\theta}\left[\tilde{\theta}^{(1)}, \tilde{\theta}^{(2)}\right] = \frac{1/v^{(1)}(\theta)}{1/v^{(2)}(\theta)}$ $\frac{1/v^{(1)}(\theta)}{1/v^{(2)}(\theta)} = \frac{v^{(2)}(\theta)}{v^{(1)}(\theta)}$ $v^{(1)}(\theta)$

Interpretation - Sample Sizes Suppose that

 $ARE_{\theta} \left[\tilde{\theta}^{(1)}, \tilde{\theta}^{(2)} \right] = 3$, then the distribution of $\tilde{\theta}^{(1)}$ based on sample size n is approximately the same as the distribution of $\tilde{\theta}^{(2)}$ based on a sample of 3n. In other

words, an estimator that's 3x more efficient as another, based on ARE, needs a sample 1/3 of the size in order to achieve the same precision.

Thrm Let $\tilde{\theta}_n$ be an estimator of θ such that

 $\sqrt{n}(\tilde{\theta}_n - \theta) \stackrel{D}{\rightarrow} \mathcal{N}[0, v(\theta)]$ holds for some $v(\theta)$. Then under regularity conditions, $v(\theta) \geq [I_1(\theta)]^{-1}$

Asymptotic Efficiency An estimator for which

 $\sqrt{n}(\tilde{\theta}_n - \theta) \stackrel{D}{\rightarrow} \mathcal{N}[0, v(\theta)]$ holds with $v(\theta) = [I_1(\theta)]^{-1}$ is called asymptotically efficient.

Corollary Let $\hat{\theta}_n^{mle}$ be the MLE estimator of θ based on the sample $\overline{X}_n = (X_1, ..., X_n)$. Then under regularity conditions, the estimator $\hat{\theta}_n^{mle}$ is asymptotically efficient.

Example - Efficiency of Bayes Estimator Let

 $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \text{Pois}(\lambda)$, where $\lambda > 0$ is unknown. It can be shown that the posterior mean of λ under a Gamma (a, b) prior is: $\hat{\lambda}^B = \frac{a + \sum_{i=1}^n X_i}{b+n} = \left(\frac{n}{b+n}\right) \bar{X}_n + \left(\frac{b}{b+n}\right) \frac{a}{b}$. Now observe that $\sqrt{n}(\hat{\lambda}^B - \lambda) =$ $\sqrt{n}\left[\left(\frac{n}{b+n}\right)\bar{X}_n+\left(\frac{b}{b+n}\right)\frac{a}{b}\right]-\sqrt{n}\left[\left(\frac{n}{b+n}\right)\lambda+\left(\frac{b}{b+n}\right)\lambda\right]$ $=\left(\frac{n}{1-n}\right)$ $b + n$ \setminus $\rightarrow 1$ $\sqrt{n}(\bar{X}_n - \lambda)$ $\stackrel{D}{\rightarrow} \overline{\mathcal{N}(0,[I_1(\theta)]^{-1})}$ $+\sqrt{n}\left(\frac{b}{b}\right)$ $b + n$ $\big\}$ ($\frac{a}{a}$) $\left(\frac{a}{b} - \lambda\right)$ $\rightarrow 0$

 $\stackrel{D}{\rightarrow} \mathcal{N}\left[0, \frac{1}{I_1(\theta)}\right]$ by Slutsky's Theorem. Thus $\hat{\lambda}^B$ is also asymptotically efficient.

Hypothesis Testing

Simple A hypothesis is simple if it fully specifies the distribution of the data (including all unknown parameter values).

Composite A hypothesis is composite if it is not simple.

- Examples Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$ 1. If $H_0 : \mu = 40$ and H_1 : $\mu = 45$ with σ^2 known. H_0 and H_1 are both simple. 2. If $H_0: \mu = 40$ and $H_1: \mu \neq 40$ with σ^2 known. H_0 is simple, and H_1 composite. **3.** If $H_0: \mu = 40$ and $H_1: \mu \neq 40$ with σ^2 unknown. H_0 and H_1 are both composite. 4. If $H_0: \mu \leq 40$ and $H_1: \mu > 40$. H_0 and H_1 are both composite. **5.** If $H_0: (\mu, \sigma^2) = (40, 9)$ and $H_1: (\mu, \sigma^2) \neq (40, 9)$. H_0 simple and H_1 composite.
- **Nested Regions** Note that if $c_1 > c_2$, then $R_{c_1} \subseteq R_{c_2}$.
- **Good Tests** Mathematically, we desire that $P_{\theta}(X \in R)$ tends to be higher for $\theta \in \Theta_1$ than for $\theta \in \Theta_0$. The perfect test would have $P_{\theta}(\mathbf{X} \in R) = 1 \forall \theta \in \Theta_1$
- **Type I Error** A type I error occurs if we reject H_0 when it's actually true. i.e. if $\theta \in \Theta_0$ and $\mathbf{X} \in R$.
- **Type II Error** A type II error occurs if we fail to reject H_0 when it's actually false. i.e. $\theta \in \Theta_1$ but $\mathbf{X} \notin R$.

Power Function

 $Power(\theta) = Pr_{\theta}(\boldsymbol{X} \in R) = \begin{cases} P_{\theta}(\text{type I error}) & \theta \in \Theta_0 \\ 1 & P_{\theta}(\text{true II error}) \end{cases}$ $1 - P_{\theta}$ (type II error) : $\theta \in \Theta_1$

- Error Trade-Off If we increase c , then we tend to decrease $P_{\theta}(\mathbf{X} \in R_c) = P_{\theta} [T(\mathbf{X}) \geq c]$ for all θ . This decreases the probability of a type I error but increases the probability of type II error. If we decrease c , then we tend to increase $P_{\theta}(\mathbf{X} \in R) = P_{\theta} [T(\mathbf{X}) \geq c]$ for all θ . This decreases the probability of a type II error but increases the probability of a type I error.
- **Level** of a test is any $\alpha \in \mathbb{R}$ such that $Power(\theta) \leq \alpha$ for all $\theta \in \Theta_0$. (an "upper-bound" for a type I error)
- **Size** of a test is $sup_{\theta \in \Theta_0} Power(\theta)$. (max type I error probability)
- Achieving Specified Size If the distribution of $T(X)$ is continuous, there exists a choice of the critical value c that achieves size α . We want to find a value $c \in R$ such that $\alpha = Pr_{\theta_0} [T(\boldsymbol{X}) \ge c] = Pr_{\theta_0} [T(\boldsymbol{X}) > c] = 1 - F_{\theta_0}^{[T(\boldsymbol{X})]}(c).$ If the distribution of $T(\mathbf{X})$ is *discrete*, there may not exist a c such that $Pr_{\theta_0} [T(\boldsymbol{X}) \ge c]$, in which case we typically try and find a test with size less than α so it still has level α .
- **P-Values** Suppose that we observe $X = x_{obs}$, then the p-value of the test with statistic $T(X)$ for the observed data is: $p(\boldsymbol{x}_{obs}) = \sup_{\theta \in \Theta_0} Pr_{\theta} [T(\boldsymbol{X}) \geq T(\boldsymbol{x}_{obs})].$
- **Thrm.** Let R_c be a rejection region of the form $R_c = \{x : T(X) \geq c\}$, where c is the smallest number such that the test associated with R_c has level α . Then $\mathbf{x}_{obs} \in R_c \iff p(\mathbf{x}_{obs}) \leq \alpha.$
- **Proof** Suppose that $x_{obs} \in R_c$. Then $T(\mathbf{X}_{obs}) \geq c$, so $p(\boldsymbol{x}_{obs}) = \sup_{\theta \in \Theta_0} Pr_{\theta} [T(\boldsymbol{X}) \geq T(\boldsymbol{x}_{obs})] \leq$ $\sup_{\theta \in \Theta_0} Pr_{\theta} [T(\boldsymbol{X}) \ge c] \le \alpha$, since the test has level α . Now suppose instead that $\mathbf{x}_{obs} \notin R_c$. Then $T(\mathbf{x}_{obs}) < c$, so $p(\boldsymbol{x}_{obs}) = \sup_{\theta \in \Theta_0} Pr_{\theta} [T(\boldsymbol{X}) \geq T(\boldsymbol{x}_{obs})] > \alpha$, since otherwise c would not be the smallest number such that the test associated with R_c has level α \Box
- Corollary An equivalent way to make the final decision in a hypothesis test is to calculate the p-value $p(x_{obs})$ for the observed data x_{obs} and reject H_0 at level α if and only if $p(\boldsymbol{x}_{obs}) \leq \alpha$.

Likelihood Ratio Test

- General Method Sometimes, it's not clear which test-statistic to use. The LRT is a general method based on the likelihood function, $L_{\mathbf{x}}(\theta)$ and the sets Θ_0 and Θ_1 .
- **Definition** Let $\Theta = \Theta_0 \cup \Theta_1$. The Likelihood Ratio Statistic is defined as $\Lambda(\boldsymbol{X}) = \frac{\sup_{\theta \in \Theta_0} L_{\boldsymbol{x}}(\theta)}{\sup_{\theta \in \Theta_0} L_{\boldsymbol{x}}(\theta)}$ $\frac{\exp(\epsilon\Theta_0 - \mu(\epsilon))}{\sup_{\theta \in \Theta} L_{\mathbf{x}}(\theta)}$, which rejects H_0 if and only if $\Lambda(X) \leq k$, where $k \in (0,1)$ is chosen to specify the level of the test. By definition, $0 \leq \Lambda(X) \leq 1$.
- **Simple Null If 1.** The null hypothesis is simple $(H_0 : \theta = \theta_0)$ and 2. The MLE $\hat{\theta}_n^{mle}$ of θ on the parameter space $\Theta = \Theta_0 \cup \Theta_1$ exists, then $\Lambda(\boldsymbol{X}) = \frac{L_{\boldsymbol{x}}(\theta_0)}{L_{\boldsymbol{x}}(\hat{\theta}_m^{mle})}$
- **Example** Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \text{Expo}(\lambda)$, where $\lambda > 0$. $H_0 : \lambda = 2$ and $H_1: \lambda \neq 2$. Then, $L_{\mathbf{x}}(\lambda) = \lambda^n \exp(-\lambda \sum_{i=1}^n X_i)$. Further, $\hat{\lambda}_n^{mle} = (\bar{X}_n)^{-1}$. Then, $L_{\mathbf{x}}(2) = 2^{n} \exp \left(-2 \sum_{i=1}^{n} X_{i}\right) = \exp \left[-n \left(2 \bar{X}_{n} - \log 2\right)\right],$

and
\n
$$
L_{\mathbf{x}}(\hat{\lambda}_n^{mle}) = \left(\frac{n}{\sum_{i=1}^n X_i}\right)^n \exp(-n) = \exp\left[-n\left(1 + \log \bar{X}_n\right)\right].
$$
\nThe LRT is given by
\n
$$
\Lambda(\mathbf{X}) = \frac{L_{\mathbf{x}}(2)}{L_{\mathbf{x}}(\hat{\lambda}_n^{mle})} = \frac{\exp[-n(2\bar{X}_n - \log 2)]}{\exp[-n(1 + \log \bar{X}_n)]} =
$$
\n
$$
\exp\left[n\left(1 + \log 2 + \log \bar{X}_n - 2\bar{X}_n\right)\right] = \left[2\bar{X}_n \exp\left(1 - 2\bar{X}_n\right)\right]^n.
$$
\nultimately, LRT rejects H_0 if and only if
\n
$$
\left[2\bar{X}_n \exp\left(1 - 2\bar{X}_n\right)\right]^n \leq k.
$$
 Equivalently, reject if
\n
$$
\bar{X}_n \exp\left(-2\bar{X}_n\right) \leq (2e)^{-1}k^{1/n}
$$

- Composite Null In this case, finding the numerator of $\Lambda(X)$ typically requires first maximizing the likelihood function subject to the constraints of H_0 , then evaluating the likelihood at this point.
- **Example** Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ are both unknown. H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$ for some $\mu_0 \in \mathbb{R}$. The numerator of $\Lambda(\boldsymbol{X})$ is given by $\sup_{\sigma^2>0} L_{\mathbf{x}}(\mu_0, \sigma^2)$. Observe that $\frac{\partial}{\partial \sigma^2} \ell_{\mathbf{x}}(\mu_0, \sigma^2) = -\frac{n}{n\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (X_i - \mu_0)^2 = 0 \iff$ $\tilde{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_0)^2$, since this value is indeed a maximum. Recall the unconstrained MLE of μ and σ^2 are given by: $\hat{\mu} = \bar{X}_n$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$. The LRT is given by: $\Lambda(\boldsymbol{X}) = \frac{(2\pi\tilde{\sigma}_0^2)^{-n/2} \exp[-(2\tilde{\sigma}_0^2)^{-1} \sum_{i=1}^n (X_i - \mu_0)^2]}{(2\pi\tilde{\sigma}_0^2)^{-n/2} \Gamma(\mu_0^2)^{-1} \sum_{i=1}^n (X_i - \mu_0)^2]}$ $\frac{\exp[-(2\sigma_0)^{-1} - \frac{2i}{2}](\Lambda_i - \mu_0)^{-1}}{(2\pi\hat{\sigma}^2)^{-n/2} \exp[-(2\hat{\sigma}^2)^{-1} \sum_{i=1}^n (X_i - \hat{\mu})^2]}$ $\binom{n}{i=1}(X_i-\hat{\mu})$ $\frac{(\tilde{\sigma}_0^2)^{-n/2} \exp[-n/2]}{(\hat{\sigma}^2)^{-n/2} \exp[-n/2]} = \left(\frac{\hat{\sigma}^2}{\tilde{\sigma}_0^2}\right)$ $\tilde{\sigma}_0^2$ $\bigg)^{n/2} = \bigg[\frac{\sum_{i=1}^{n} (X_i - \bar{X}_n)^2}{\sum_{i=1}^{n} (X_i - \bar{X}_n)^2} \bigg]$ $\frac{\sum_{i=1}^{n}(X_i-\bar{X}_n)^2}{\sum_{i=1}^{n}(X_i-\mu_0)^2}$ ^{n/2}. Observe that $\sum_{i=1}^{n} (X_i - \mu_0)^2 = \sum_{i=1}^{n} (X_i - \bar{X}_n + \bar{X}_n - \mu_0)$
 $\sum_{i=1}^{n} (X_i - \bar{X}_n)^2 + n(\bar{X}_n - \mu_0)^2 + 2(\bar{X}_n - \mu_0)$ $\sum_{i=1}^{n} (X_i - \mu_0)^2 = \sum_{i=1}^{n} (X_i - \bar{X}_n + \bar{X}_n - \mu_0)^2 = \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 + n(\bar{X}_n - \mu_0)^2 + 2(\bar{X}_n - \mu_0) \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 + n(\bar{X}_n - \mu_0)^2$. Then, $\Lambda(\bm{X}) = \begin{bmatrix} \frac{\sum_{i=1}^{n} (X_i - \bar{X}_n)^2 + n(\bar{X}_n - \mu_0)^2}{\sum_{i=1}^{n} (Y_i - \bar{X}_n)^2} \end{bmatrix}$ $\frac{(X_i-\bar{X}_n)^2+n(\bar{X}_n-\mu_0)^2}{\sum_{i=1}^n (X_i-\bar{X}_n)^2}$ = $\left[1+\frac{n(\bar{X}_n-\mu_0)^2}{\sum_{i=1}^n(X_i-\bar{X})^2}\right]^{-n/2} = \left[1+\frac{(\bar{X}_n-\mu_0)^2}{\hat{\sigma}^2}\right]$ $\frac{(-\mu_0)^2}{\hat{\sigma}^2}$ $\Big]^{-n/2}$ =

 $\left[1+\frac{[T(\bm{X})]^2}{n-1}\right]^{-n/2}$, where $T(\bm{X})=\frac{|\bar{X}_n-\mu_0|}{\sqrt{\sigma^2/(n-1)}}=\frac{|\bar{X}_n-\mu_0|}{\sqrt{S^2/n}}$ where $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ is the unbiased sample variance. If H_0 true, then $T(\mathbf{X})$ is the distribution of the absolute value of a Student's T random variable.

Wald Test

- Background Under suitable regularity conditions, we know the asymptotic distribution of MLE's is normal: $\sqrt{I_n(\hat{\theta}_n^{mle})}(\hat{\theta}_n^{mle} - \theta) \overset{D}{\rightarrow} \mathcal{N}(0, 1)$ and also that $\sqrt{J_n}(\hat{\theta}_n^{mle} - \theta) \stackrel{D}{\rightarrow} \mathcal{N}(0, 1),$ where $J_n = -\ell_{\mathbf{X}_n}^{\prime\prime}(\hat{\theta}_n^{mle})$ **Definition** Test $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$, with size α , by rejecting H_0 if and only if $\sqrt{I_n(\hat{\theta}_n^{mle})} |\hat{\theta}_n^{mle} - \theta_0| \ge c$, where c is the number such that $Pr(|Z| > c) = \alpha$ for a standard normal RV Z. Alternatively, reject $H_0 \iff$
	- $\overline{J_n}|\hat{\theta}_n^{mle} \theta_0| \geq c.$
- **Example** Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \text{Expo}(\lambda)$, where $\lambda > 0$. Test $H_0: \lambda = 2$ against $H_1: \lambda \neq 2$. Recall that $\hat{\lambda}_n^{mle} = (\bar{X}_n)^{-1}$. Note that $\ell''_{\mathbf{X}_n}(\lambda) = \frac{\partial^2}{\partial \lambda^2} (n \log \lambda - \lambda \sum_{i=1}^n X_i) = -\frac{n}{\lambda^2}$. So, $I_n(\lambda) = -E_\lambda[\ell''_{\mathbf{X}_n}(\lambda)] = n/\lambda^2$, and hence $I_n(\hat{\lambda}_n^{mle}) = \frac{n}{(\hat{\lambda}_n^{mle})^2}$. Similarly, $J_n = -\ell_{\boldsymbol{X}_n}(\hat{\lambda}_n^{mle}) = \frac{n}{(\hat{\lambda}_n^{mle})^2}$. The Wald Tests for either

form are identical, in this case:

$$
\begin{array}{l} {\sqrt {I_n(\hat \lambda _n^{mle})} |\hat \lambda _n^{mle}-2| } = \sqrt {J_n} |\hat \lambda _n^{mle}-2| = \\ {\sqrt {\frac{n}{{(\hat \lambda _n^{mle})^2} }} |\hat \lambda _n^{mle}-2| } = \sqrt n |1 - \frac{2}{{\hat \lambda _n^{mle}} }| = \sqrt n |1 - 2\bar X_n| \end{array}
$$

Score Test

- Background Recall that under regularity conditions, $\sqrt{n}\left[\frac{1}{n}\ell'_{\mathbf{X}_n}(\theta)-0\right]=\frac{1}{\sqrt{n}}\ell'_{\mathbf{X}_n}(\theta)\stackrel{D}{\rightarrow}\mathcal{N}[0,\mathbf{I}_1(\theta)].$ It follows that $\frac{1}{\sqrt{nI_1(\theta)}}\ell'_{\mathbf{X}_n}(\theta) = \frac{1}{\sqrt{I_n(\theta)}}\ell'_{\mathbf{X}_n}(\theta) \stackrel{D}{\to} N(0, 1)$
- **Definition** Test $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$, with
approximate size α . Reject $H_0 \iff \frac{1}{\sqrt{I_n(\theta_0)}} |\ell'_{\mathbf{X}_n}(\theta_0)| \geq c$, where c is the number such that $Pr(|Z| \ge c) = \alpha$ for a standard normal RV Z.
- **Example** Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \text{Expo}(\lambda)$, where $\lambda > 0$. Test H_0 : $\lambda = 2$ against H_1 : $\lambda \neq 2$. The score function is: $\ell'_{\mathbf{X}_n}(\lambda) = \frac{\partial}{\partial \lambda} \left(n \log \lambda - \lambda \sum_{i=1}^n X_i \right) = \frac{n}{\lambda} - \sum_{i=1}^n X_i =$ $n\left(\frac{1}{\lambda}-\bar{X}_n\right)$, where $\bar{X}_n=n^{-1}\sum_{i=1}^n X_i$. From previous example, $I_n(\lambda) = n/(\lambda)^2$. Then, the score test statistic is given by: given by:
 $\frac{1}{\sqrt{I_n(2)}} |\ell'_{\mathbf{X}_n}(2)| = \frac{1}{\sqrt{n/4}} |n(\frac{1}{2} - \bar{X}_n)| = \sqrt{n}|1 - 2\bar{X}_n|.$ The score test rejects H_0 if and only if the statistic is at least as large as some value, c, determined by the size.

Asymptotic Likelihood Ratio Tests

Thrm. Let $\Lambda(\mathbf{X}_n)$ be the likelihood ratio test for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$, based on sample \mathbf{X}_n . Then under regularity conditions: $-2\log\Lambda(\mathbf{X}_n) \stackrel{D}{\rightarrow} \chi_1^2$, if $\theta = \theta_0$.

Proof Let $\hat{\theta}_n^{mle}$ denote the MLE of θ . A Taylor Expansion of $\ell_{\boldsymbol{X}_n}(\theta_0)$ around $\ell_{\boldsymbol{X}_n}(\hat{\theta}_n^{mle})$:

$$
\ell_{\boldsymbol{X}_n}(\theta_0) = \ell_{\boldsymbol{X}_n}(\hat{\theta}_n) + \ell'_{\boldsymbol{X}_n}(\hat{\theta}_n)(\theta_0 - \hat{\theta}_n) + \frac{1}{2}\ell''_{\boldsymbol{X}_n}(\theta_0 - \hat{\theta}_n)^2 + \dots
$$

$$
= \ell_{\boldsymbol{X}_n}(\hat{\theta}_n) + \frac{1}{2}\ell''_{\boldsymbol{X}_n}(\theta_0 - \hat{\theta}_n)^2 + \dots
$$

since $\ell'_{\mathbf{X}_n}(\hat{\theta}_n) = 0$. Further, the regularity conditions allow us to ignore higher-order terms. Now, observe that

$$
-2\log\Lambda(\mathbf{X}_n) = -2\log\left[\frac{L_{\mathbf{X}_n}(\theta_0)}{L_{\mathbf{X}_n}(\hat{\theta}_n)}\right] =
$$

\n
$$
-2\left[\ell_{\mathbf{X}_n}(\theta_0) - \ell_{\mathbf{X}_n}(\hat{\theta}_n)\right] \approx -\ell_{\mathbf{X}_n}''(\hat{\theta}_n)(\theta_0 - \hat{\theta}_n)^2
$$
 by the
\nTaylor Expansion. Then, $-2\log\Lambda(\mathbf{X}_n) \approx$
\n
$$
-\ell_{\mathbf{X}_n}''(\hat{\theta}_n)(\theta_0 - \hat{\theta}_n)^2 = J_n(\hat{\theta}_n - \theta_0)^2 = \left[\sqrt{J_n}(\hat{\theta}_n - \theta_0)\right]^2
$$
. If
\nthe true value of $\theta = \theta_0$, then

$$
\sqrt{J_n} |\hat{\theta}_n - \theta| \overset{D}{\rightarrow} \mathcal{N}(0, 1) \implies \left[\sqrt{J_n} |\hat{\theta}_n - \theta| \right]^2 \overset{D}{\rightarrow} \chi_1^2
$$
, using continuous mapping thrm. for convergence in distribution.

Rejection Region A test of $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$ with approximate size α is to reject $H_0 \iff -2\log \Lambda \mathbf{X}_n \geq C$, where C is the number such that $Pr(W \ge C) = \alpha$ for a χ_1^2 R.V. W, or equivalently, the number such that $Pr(|Z| \geq \sqrt{C}) = \alpha$ for a $\mathcal{N}(0, 1)$ R.V. Z.

Example Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \text{Expo}(\lambda)$, where $\lambda > 0$. Test H_0 : $\lambda = 2$ against H_1 : $\lambda \neq 2$. Recall the LRT is: $\Lambda(\boldsymbol{X}_n) = [2\bar{X}_n \exp(1 - 2\bar{X}_n)]^n$. Note that $-2\log\Lambda(\boldsymbol{X}_n) = -2n[1 + \log(2\bar{X}_n) - 2\bar{X}_n].$ To obtain LRT with size α , reject $H_0 \iff$ test statistic is at least as large as some critical value C. To obtain size $\alpha = 0.05$, take $\sqrt{C} \approx 1.96$, hence $C \approx 3.84$.

Summary of Asymptotic Tests

- Similarities The Wald Test, Score Test, and LRT provide different ways to construct hypothesis tests of H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$, with approximate size α for large n.
- **Basis:** Wald is based on the difference between θ_0 and $\hat{\theta}_n^{mle}$. Score is based on the difference between the slope of the log-likelihood at θ_0 against $\hat{\theta}_n^{mle}$. **LRT** is based on the difference between the likelihood at θ_0 against $\hat{\theta}_n$.
- **Computation:** Wald, when based on J_n , only requires the behavior of the log-likelihood at and around it's global max, $\hat{\theta}_n^{mle}$. Score only involves the behavior of the log-likelihood at and around θ_0 . **LRT** involves behavior of likelihood at both θ_0 and $\hat{\theta}_n^{mle}$.

Reparametrization Score and LRT invariant, but Wald isn't.

Confidence Intervals

- **Definition** A Confidence Level of a confidence set $C(X)$ for a parameter $\theta \in \Theta$ is a number $\gamma \geq 0$ such that $Pr_{\theta} [\theta \in C(\boldsymbol{X})] \geq \gamma$ for all $\theta \in \Theta$.
- **Thrm.** For every $\theta_0 \in \Theta$, let R_{θ_0} be the rejection region of a hypothesis test of H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$, with level α . Then $C(\boldsymbol{X}) = \{ \theta_0 \in \Theta : \boldsymbol{X} \notin R_{\theta_0} \}$ is a confidence set for θ with confidence level 1 − α.

 \Box

- **Proof** For every $\theta \in \Theta$, $Pr_{\theta} [\theta \in C(\mathbf{X})] = Pr_{\theta}(X \notin R_{\theta}) =$ $1 - Pr_{\theta}(\mathbf{X} \in R_{\theta}) \geq 1 - alpha.$
- **Example** Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ are both unknown. Let $\alpha \in (0,1)$. Begin by finding a test of H_0 : $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$ with level α . The LRT of these hypotheses is to reject $H_0 \iff \frac{|\bar{X}_n - \mu_0|}{\sqrt{S^2/n}} \geq c$. Then a confidence set for μ with confidence level $1 - \alpha$ is the set of all $\mu_0 \in \mathbb{R}$ such that $\frac{|\bar{X}_n - \mu_0|}{\sqrt{S^2/n}} < c$

Wald Confidence Interval The simplest asymptotic CI. Test H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$ reject

 $H_0 \iff \sqrt{I_n(\hat{\theta}_n^{mle})} |\hat{\theta}_n^{mle} - \theta_0| \ge c$, or alternatively $\sqrt{J_n(\hat{\theta}_n^{mle})}|\hat{\theta}_n^{mle} - \theta_0| \geq c$, where c is the number such that

 $Pr(|Z| \ge c) = \alpha$ for $Z \sim \mathcal{N}(0, 1)$. Our test fails to reject

$$
H_0 \iff \left\{ \theta_0 \in \Theta : \hat{\theta}_n - \frac{c}{\sqrt{J_n(\hat{\theta})}} < \theta_0 < \hat{\theta}_n + \frac{c}{\sqrt{J_n(\hat{\theta})}} \right\}
$$

Example Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} (\lambda)$, where $\lambda > 0$ unknown. Let $\alpha \in (0,1)$. We found earlier that both versions of Wald reject $H_0 \iff \sqrt{\frac{n}{\hat{\lambda}_n^2}} |\hat{\lambda}_n - \lambda_0| \geq c$. The Wald CI with approximate confidence level $1 - \alpha$ is the set: $\lambda_0 > 0 : \hat{\lambda}_n - c\sqrt{\frac{\hat{\lambda}_n^2}{n}} < \lambda_0 < \hat{\lambda}_n + c\sqrt{\frac{\hat{\lambda}_n^2}{n}}$. Note the

restriction that $\lambda_0 > 0$ ensures the CI doesn't spill over the parameter space.

Score Confidence Interval A score test of $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$ rejects $H_0 \iff \frac{1}{\sqrt{I_n(\theta_0)}} |\ell'_{\mathbf{X}_n}(\theta_0)| \geq c$. The test fails to reject $H_0 \iff \left\{\theta_0 \in \Theta : \frac{1}{\sqrt{I_n(\theta_0)}} |\ell'_{\mathbf{X}_n}(\theta_0)| < c \right\}.$ This is a Score Confidence Set.