Santucci's Stats 200 Notes

Basic Probability

Cauchy-Schwarz			Chebyschev
$ E(XY) \le \sqrt{E(X^2)E(X^2)} = 0$	$\overline{(Y^2)} \qquad P(X \ge t) \le$	$\leq \frac{E[X]}{t}$	$P(X - \mu \ge t) \le \frac{\sigma^2}{t^2}$
G 1111 1 F		z 1 C	∞ () $c(X Y)$ ())

Conditional Expectation $E[g(X)|Y = y] = \int_{-\infty}^{\infty} g(x) f^{(X|Y)}(x|y) dx$

Conditional Variance

 $Var[g(X)|Y = y] = E[\{g(X)\}^2|Y = y] - \{E[g(X)|Y = y]\}^2$

Total Expectation $E[g(X)] = E\{E[g(X)|Y]\}$

Total Variance Var(X) = E[Var(g(X)|Y)] + Var(E[g(X)|Y])

Convergence Concepts

- **Convergence in Probability** $\{X_n : n \ge 1\}$ converges in probability to X if $\forall \epsilon > 0$: $Pr(|X_n X| > \epsilon) \to 0$.
- **Convergence in Distribution** $\{X_n : n \ge 1\}$ converges in distribution to X if $F^{(X_n)}(x) \to F^{(X)}(x)$ at every point where F is continuous.

Thrm. If $X_n \xrightarrow{P} X$, then $X_n \xrightarrow{D} X$.

Thrm. Let $\alpha \in \mathbb{R}$ be a constant. Then $X_n \xrightarrow{P} \alpha \iff X_n \xrightarrow{D} \alpha$.

- Showing Convergence in Probability Options: show (1) directly through definition, (2) if convergence to a constant, try showing convergence in distribution, or (3) use thrm.: if $E[X_n] \to \alpha \in \mathbb{R}$ and $Var(X_n) \to 0$, $\Longrightarrow X_n \xrightarrow{P} \alpha$.
- Showing Convergence in Distribution Options: show (1)
- Convergence in Probability, (2) Convergence in Distribution through CDF's, or (3) CLT [requires i.i.d. and sums/average].

Continuous Mapping Theorems

Thrm. If $X_n \xrightarrow{P} \alpha$ for some constant $\alpha \in \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ is continuous at α , then $g(X_n) \xrightarrow{P} g(\alpha)$ (This is also true if $X_n \xrightarrow{D} \alpha$, using the above thrm.)

Thrm. If $X_n \xrightarrow{P} X$ and $g : \mathbb{R} \to \mathbb{R}$ is continuous, then $g(X_n) \xrightarrow{P} g(X)$

Thrm. If $X_n \xrightarrow{D} X$ and $g : \mathbb{R} \to \mathbb{R}$ is continuous, then $g(X_n) \xrightarrow{D} g(X)$

Slutsky's Theorem

If $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} \alpha$, where $\alpha \in \mathbb{R}$ is a constant, then $X_n + Y_n \xrightarrow{D} X + \alpha$ and $X_n Y_n \xrightarrow{D} \alpha X$.

Weak Law of Large Numbers

Let $\{X_n : n \ge 1\}$ be a sequence of i.i.d. R.V.'s with $E[|X_1|] < \infty$. Let $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$. Then, $\bar{X}_n \xrightarrow{P} E[X_1]$.

Proof Let
$$X_1, ..., X_n$$
 be i.i.d (μ, σ^2) , with $\sigma^2 < \infty$, Chebyschev
implies $Pr(|\bar{X}_n - \mu| < \epsilon) \le 1 - \frac{\sigma^2}{n\epsilon^2}$. Hence,
 $\lim n \to \infty Pr(|\bar{X}_n - \mu| < \epsilon) = 1$.

Central Limit Theorem

The asymptotic distribution of an average of i.i.d. R.V.'s is a normal distribution, regardless of the individual random variables themselves.

Thrm. Let $\{X_n : n \ge 1\}$ be a sequence of i.i.d. R.V.'s with $Var(X_1) < \infty$. Let $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$. Then

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{D} \mathcal{N}(0, 1)$$

where $\mu = E[X_1]$ and $\sigma^2 = Var(X_1)$.

Delta Method

Basic idea: $g(Y_n) - g(\alpha) \approx g'(\alpha)(Y_n - \alpha)$

Thrm. Let $\{Y_n : n \ge 1\}$ be a sequence of random variables such that

 $\sqrt{n}(Y_n - \alpha) \xrightarrow{D} Z$ for some random variable Z and some constant $\alpha \in \mathbb{R}$. Let $g : \mathbb{R} \to \mathbb{R}$ be continuously differentiable at α . Then,

 $\sqrt{n}[g(Y_n) - g(\alpha)] \xrightarrow{D} g'(\alpha)Z$

Proof Formally, $\sqrt{n}[g(Y_n) - g(\alpha)] = g'(Y_n *)\sqrt{n}(Y_n - \alpha)$ for some $Y_n *$ between α and Y_n . Note that for any $\epsilon > 0$, $Pr(|Y_n * -\alpha| > \epsilon) \leq Pr(|Y_n - \alpha| > \epsilon) \xrightarrow{P} 0$ since $Y_n \xrightarrow{P} \alpha$

(through WLLN). Then, $Y_n \stackrel{P}{\to} \alpha$, so $q'(Y_n *) \stackrel{P}{\to} q'(\alpha)$ by our

first continuous mapping theorem. Since $\sqrt{n}[Y_n - \alpha] \xrightarrow{D} Z$, the result follows by Slutsky's theorem.

Random Vectors

Expectation $E[\mathbf{X}] = [E[X_1], ..., E[X_n]]$ **Variance** $Var(\mathbf{X}) = E[\{\mathbf{X} - E[\mathbf{X}]\}\{\mathbf{X} - E[\mathbf{X}]\}^{\mathsf{T}}] = E[\mathbf{X}\mathbf{X}^{\mathsf{T}}] - E[\mathbf{X}]E[\mathbf{X}]^{\mathsf{T}}$ **Linearity** $E[\alpha + B\mathbf{X} + C\mathbf{Y}] = \alpha + BE[\mathbf{X}] + CE[\mathbf{Y}]$ $Var(\alpha + B\mathbf{X}) = BVar(\mathbf{X})B^{\mathsf{T}}$

Multivariate Normal Distribution

- **Definition** Let Z be a random vector with $\boldsymbol{\theta} = E[Z]$ and $\boldsymbol{V} = Var(\boldsymbol{Z})$. \boldsymbol{Z} is called *multivariate normal*, denoted $\boldsymbol{Z} \sim N_p(\boldsymbol{\theta}_p, \boldsymbol{V}_p) \iff \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{Z}$ has a univariate normal distribution for all $\boldsymbol{\alpha} \in \mathbb{R}^p$. The following properties hold:
- $\mathbf{PDF}~$ If \boldsymbol{V} is non-singular (invertible), then

$$f(\boldsymbol{z}) = \frac{1}{(2\pi)^{p/2} det \boldsymbol{V}^{1/2}} \exp\left[-1/2(\boldsymbol{z} - \boldsymbol{\theta})^{\mathsf{T}} \boldsymbol{V}^{-1}(\boldsymbol{z} - \boldsymbol{\theta})\right]$$

where det denotes determinant.

Independence $Z_i \perp Z_j \iff V_{ij} = Cov(Z_i, Z_j) = 0.$

- **Standard Normal** Let $\mathbf{0}_p$ Denote a zeros vector length p, and \mathbf{I}_p denotes the $p \times p$ identity matrix. $N_p(\mathbf{0}_p, \mathbf{I}_p)$ is called the *p*-variate standard normal distribution.
- **Lemma** Let \boldsymbol{A} be a $p \times p$ matrix that is orthogonal $(\boldsymbol{A}\boldsymbol{A}^{\intercal} = \boldsymbol{A}^{\intercal}\boldsymbol{A} = \boldsymbol{I}_p)$, and let $Z \sim \mathcal{N}_p(\boldsymbol{0}_p, \boldsymbol{I}_p)$. Then $\boldsymbol{A}\boldsymbol{Z} \sim \mathcal{N}_p(\boldsymbol{0}_p, \boldsymbol{I}_p)$.
- **Proof** For any vector $\boldsymbol{b} \in \mathbb{R}^p$, the random vector $\boldsymbol{b}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{Z} = (\boldsymbol{A}^{\mathsf{T}} \boldsymbol{b})^{\mathsf{T}} \boldsymbol{Z}$ has a univariate normal since \boldsymbol{Z} is multivariate normal. Then $\boldsymbol{A} \boldsymbol{Z}$ is multivariate normal. Now simply note that $E[\boldsymbol{A} \boldsymbol{Z}] = \boldsymbol{A} E[\boldsymbol{Z}] = \boldsymbol{0}_p$ and that $Var(\boldsymbol{A} \boldsymbol{Z}) = \boldsymbol{A} \boldsymbol{I}_p \boldsymbol{A}^{\mathsf{T}} = \boldsymbol{A} \boldsymbol{A}^{\mathsf{T}} = \boldsymbol{I}_p$

Sample Variance

Let
$$X_1, ..., X_n \stackrel{i.i.d.}{\longrightarrow} \mathcal{N}(\mu, \sigma^2)$$
, where $n \ge 2$. $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ where $\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^n}{2})$ and

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - (\bar{X}_{n})^{2} \right]$$

Chi-Squared Distribution

Let $\mathbf{Z} \sim N_p(\mathbf{0}_p, \mathbf{I}_p)$, then $\mathbf{Z}^{\intercal} \mathbf{Z} = \sum_{i=1}^p Z_i^2$ is called a *chi-squared* distribution with p-degrees of freedom, with expectation p and variance 2p. Recall: $Var(Z_i) = 1 = E[Z_i^2]$

Lemma The χ_1^2 distribution is the Gamma(1/2, 1/2) distribution.

Lemma Let $U_1, ..., U_n$ be independent with $U_i \sim Gamma(\alpha_i, \beta)$ for each $i \in \{1, ..., n\}$. Then $\sum_{i=1}^n U_i \sim Gamma(\sum_{i=1}^n \alpha_i, \beta)$.

Joint Dist.: Sample Mean/Variance

- **Thrm.** Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $n \geq 2$. Then $\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ and $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$. Further, \bar{X}_n and S^2 are independent.
- **Proof** Sufficient to prove for $\mu = 0$ and $\sigma^2 = 1$. Let $\mathbf{X} = (X_1, ..., X_n) \sim N_n(\mathbf{0}_n, \mathbf{I}_n)$. Now let A be and orthogonal $p \times p$ matrix, for which all the elements in the first row are $\frac{1}{\sqrt{n}}$, constructed via Graham-Schmidt. Let $\mathbf{Y} = (Y_1, ..., Y_n) = \mathbf{A}\mathbf{X}$. By a previous lemma, $Y \sim N_n(\mathbf{0}_n, \mathbf{I}_n)$, so the sum of squares of its last n - 1 elements is $\sum_{i=2}^n Y_i^2 \sim \chi_{n-1}^2$. Note that the first element is $Y_1 = \sqrt{n}\overline{X}_n$, so we may write: $\sum_{i=2}^n Y_i^2 = \sum_{i=1}^n Y_i^2 - Y_1^2 = \mathbf{X}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{X} - n(\overline{X}_n)^2 =$ $\mathbf{X}^{\mathsf{T}}\mathbf{X} - n(\overline{X}_n)^2 = \sum_{i=1}^n X_i^2 - n(\overline{X}_n)^2 = (n-1)S^2$ Finally, note that $Y_1, ..., Y_n$ are all independent, so Y_1 and $\sum_{i=2}^n Y_i^2$ are independent.
- **Expectation** The above theorem tells us that $E[(\frac{n-1}{\sigma^2})S^2] = n-1$, and thus $E[S^2] = \sigma^2$
- Without Normality Suppose $X_1, ..., X_n$ are i.i.d with $E[X_1] = \mu$ and $Var(X_1) = \sigma^2$, but suppose their distribution is not normal. We still have $E[\bar{X}_n] = \mu$, and $Var(\bar{X}_n) = \frac{\sigma^2}{n}$, and $E[S^2] = \sigma^2$. However, \bar{X}_n is not necessarily normal (although it is approximately normal for large n by CLT), and the distribution of $(\frac{n-1}{\sigma^2})S^2$ is not necessarily chi-squared. Further, \bar{X}_n and S^2 are not necessarily independent.

Student's T-Distribution

- **Definition** Let $Z \sim \mathcal{N}(0, 1)$ and $U \sim \chi_p^2$ be independent R.V.'s, the distribution of $\frac{Z}{\sqrt{U/p}}$ is student's t-distribution with p-degrees of freedom. It is centered around 0.
- **Thrm.** Let $X_1, ..., X_n \stackrel{i.i.d}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $n \ge 2$, then $\frac{\bar{X}_n \mu}{\sqrt{S^2/n}} \sim t_{n-1}$.
- **Proof** Let $Z = \frac{\bar{X}_n \mu}{\sqrt{\sigma^2/n}}$ and $U = (n-1)S^2/\sigma^2$, by our last theorem $Z \sim \mathcal{N}(0,1)$ and $U \sim \chi^2_{n-1}$, and they are independent. The result follows by definition since $T = \frac{Z}{\sqrt{U/(n-1)}}$
- **Lemma** Let $U_n \sim \chi_n^2$ for every $n \geq 1$. Then $U_n/n \xrightarrow{P} 1$ as $\lim n \to \infty$. **Proof:** Let $Z_1, ..., Z_n \xrightarrow{i.i.d.} \mathcal{N}(0, 1)$, and let $U_n = \sum_{i=1}^n Z_i^2$. $U_n/n \xrightarrow{P} 1$ by WLLN, therefore $U_n/n \xrightarrow{D} 1$. \Box
- **Thrm.** Let $T_n \sim t_n$ for every $n \geq 1$. Then $T_n \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$ as $\lim n \to \infty$. **Proof:** Let $Z \sim \mathcal{N}(0,1)$ and $U \sim \chi_n^2$, and let $Z \perp U$. The results follow using the Continuous Mapping Thrm., the above lemma, and Slutsky's Thrm.

Maximum Likelihood Estimation

 $\label{eq:likelihood} \mbox{ Describes the probability of observing data given certain } parameter values. It is not a "pdf" of θ given the data x. }$

- **Thrm.** Let $\hat{\theta}^{mle}$ be a maximum likelihood estimator of θ over the parameter space Θ , and let g be a function that with domain Θ and image Ξ . Then $\hat{\xi}^{mle} = g(\hat{\theta}^{mle})$ is a maximum likelihood estimator of $\xi = g(\theta)$ over the parameter space Ξ .
- **Example** Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ are both unknown. Find the MLE of both parameters.

$$L_{\mathbf{x}}(\mu, \sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{(X_{i}-\mu)^{2}}{2\sigma^{2}}\right] = (2\pi\sigma^{2})^{-n/2} \exp\left[-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(x_{i}-\mu)^{2}\right], \text{ therefore,} \\ \ell_{\mathbf{x}}(\mu, \sigma^{2}) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^{2}) - \frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(x_{i}-\mu)^{2}.$$

- Differentiating w.r.t. each parameter yields: $\frac{\partial}{\partial \mu} \ell_x(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n x_i - \frac{n\mu}{\sigma^2} = \frac{n}{\sigma^2} (\bar{x_n} - \mu), \text{ and } \\
 \frac{\partial}{\partial \sigma^2} \ell_x(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = \\
 \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n [(x_i - \mu)^2 - \sigma^2].$ Setting both sides to zero, first note that: $\frac{\partial}{\partial \mu} \ell_x(\mu, \sigma^2) = \frac{n}{\sigma^2} (\bar{x} - \mu) = 0 \implies \bar{x} = \mu.$ Substitute $\mu = \bar{x}$ in our other partial derivative and set it to 0: $\frac{\partial}{\partial \sigma^2} \ell_x(\mu, \sigma^2) = \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n [(x_i - \mu)^2 - \sigma^2] = 0 \implies \sigma^2 = \\
 n^{-1} \sum_{i=1}^n (x_i - \bar{x})^2 = \left(\frac{n-1}{n}S^2\right)$
- Tips 1. Check 2^{nd} derivative. 2. Check Boundaries. 3. Ensure estimator's max/min are within parameter space.

Bayesian Estimation

- **Conjugate Priors** A family of distributions is called *conjugate* for a particular likelihood function if choosing a prior from that family leads to a posterior that is also from that family.
- **Example** Let $X_1, ..., X_n | \mu \overset{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ is unknown but $\sigma^2 > 0$ is known. Let the prior on μ be $\mu \sim \mathcal{N}(\xi, \tau^2)$, where $\xi \in \mathbb{R}$ and $\tau^2 > 0$ are known. To find the posterior of μ , we use the shortcut method, ignoring anything that is not a function

of
$$\mu$$
: $L_{\boldsymbol{x}}(\mu)\pi(\mu) \propto \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i-\mu)^2\right] \exp\left[-\frac{(\mu-\xi)}{2\tau^2}\right]$
 $\propto \exp\left[\frac{\mu}{\sigma^2}\sum_{i=1}^n x_i - \frac{n\mu^2}{2\sigma^2} - \frac{\mu^2}{2\tau^2} + \frac{\xi\mu}{\tau^2}\right]$
 $\propto \exp\left[-\frac{(n\tau^2+\sigma^2)\mu^2}{2\sigma^2\tau^2} + \frac{(n\bar{x}\tau^2+\xi\sigma^2)\mu}{\sigma^2\tau^2}\right]$
 $\propto \exp\left[-\frac{1}{2}\left(\frac{n\tau^2+\sigma^2}{\sigma^2\tau^2}\right)\left(\mu^2 - 2\mu\frac{n\tau^2\bar{x}+\sigma^2\xi}{n\tau^2+\sigma^2}\right)\right]$
 $\propto \exp\left[-\frac{1}{2}\left(\frac{n\tau^2+\sigma^2}{\sigma^2\tau^2}\right)\left(\mu - \frac{n\tau^2\bar{x}+\sigma^2\xi}{n\tau^2+\sigma^2}\right)^2\right]$, which we recognize as another normal distribution. Thus, the posterior distribution of μ given $\boldsymbol{X} = \boldsymbol{x}$ is: $\mu|\boldsymbol{x} \sim N\left(\frac{n\tau^2\bar{x}+\sigma^2\xi}{n\tau^2+\sigma^2}, \frac{n\tau^2+\sigma^2}{n\tau^2+\sigma^2}\right)$, which can be rewritten as $\mu|\boldsymbol{x} \sim N\left[\frac{\frac{1}{\sigma^2/n}}{\frac{1}{\tau^2}+\frac{1}{\sigma^2/n}}\bar{x} + \frac{\frac{1}{\tau^2}}{\frac{1}{\tau^2}+\frac{1}{\sigma^2/n}}\xi, \frac{1}{\frac{1}{\tau^2}+\frac{1}{\sigma^2}}\right]$

Estimators - Finite Sample

- **Bias** The *bias* of an estimator $\hat{\theta}$ of a parameter θ is $Bias_{\theta}(\hat{\theta}) = E_{\theta}(\hat{\theta}) - \theta$. The estimator $\hat{\theta}$ is unbiased if $Bias_{\theta}(\hat{\theta}) = 0$ for all θ in the parameter space Θ .
- **Example** Let $X_1, ..., X_n$ be i.i.d. random variables such that both $\mu = E_{(\mu,\sigma^2)}(X_1)$ and $\sigma^2 = Var_{(\mu,\sigma^2)}(X_1)$ are finite, and

Conjugate Prior Examples

suppose $n \ge 2$. Let \bar{X} and S^2 be the usual sample mean and sample variance, respectively. Then:

$$\begin{split} E_{(\mu,\sigma^2)}(S^2) &= \frac{1}{n-1} E_{(\mu,\sigma^2)} \left(\sum_{i=1}^n X_i^2 - n\bar{X}^2 \right) = \\ \frac{1}{n-1} \left[n(\mu^2 + \sigma^2) - n(\mu^2 + \frac{\sigma^2}{n}) \right] = \frac{n-1}{n-1} \sigma^2 = \sigma^2. \end{split}$$

- **Example** $Bias_{(\mu,\sigma^2)}\left[\frac{(n-1)S^2}{n}\right] = E_{(\mu,\sigma^2)}\left[\frac{(n-1)S^2}{n}\right] \sigma^2 = \frac{(n-1)\sigma^2}{n} \sigma^2 = -\frac{\sigma^2}{n}$, which is negative $\forall \sigma^2 > 0$. \implies This estimator *tends* to underestimate the true value of σ^2 , on average.
- Variance It can also be useful to consider the variance of an estimator.

Example Suppose
$$X_1, ..., X_n \stackrel{i.1.d}{\longrightarrow} \mathcal{N}(\mu, \sigma^2)$$
. Then: $Var_{(\mu, \sigma^2)}(S^2) = \left(\frac{\sigma^2}{n-1}\right)^2 Var_{(\mu, \sigma^2)} \left[\frac{(n-1)S^2}{\sigma^2}\right] = \left(\frac{\sigma^2}{n-1}\right)^2 [2(n-1)] = \frac{2(\sigma^2)^2}{n-1}$, noting that $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$ since $X_1, ..., X_n \stackrel{i.i.d}{\sim} \mathcal{N}(\mu, \sigma^2)$. It follows that: $Var_{(\mu, \sigma^2)} \left[\left(\frac{n-1}{n}\right)S^2\right] = \left(\frac{n-1}{n}\right)^2 Var_{(\mu, \sigma^2)}(S^2)$, which is less than the variance of S^2

- **Trade-off** Usually, when comparing sensible estimators, those with larger bias often have smaller variance. To get a better idea of how to compare estimators, use *Mean Squared Error*.
- Mean Squared Error The M.S.E. of an estimator $\hat{\theta}$ of a parameter θ is $MSE_{\theta}(\hat{\theta}) = E_{\theta}[(\hat{\theta} \theta)^2].$
- **Thrm.** Let $\hat{\theta}$ be an estimator of *theta*. Then, $MSE_{\theta}(\hat{\theta}) = [Bias_{\theta}(\hat{\theta})]^2 + Var_{\theta}(\hat{\theta}).$

Proof $MSE_{\theta}(\hat{\theta}) = E_{\theta} \left[(\hat{\theta} - \theta)^2 \right] = \left[E_{\theta}(\hat{\theta} - \theta) \right]^2 + Var_{\theta}(\hat{\theta} - \theta) = \left[Bias_{\theta}(\hat{\theta}) \right]^2 + Var_{\theta}(\hat{\theta}) \quad \Box$

- **Thrm** Let $\gamma_w(\hat{\theta}) = \int_{\Theta} MSE_{\theta}(\hat{\theta})w(\theta) d\theta$. Let $\hat{\theta}^B$ denote the posterior mean of θ under the prior $\pi(\theta) = w(\theta)$. Then, $\gamma_w(\hat{\theta}^B) \leq \gamma_w(\hat{\theta})$ for any other estimator $\hat{\theta}$ of θ .
- Finding Unbiased Estimators No ironclad solution: (1) Look at E[X] and Var(X), play with E[X], $E[X^2]$ and $E[X]^2$ to get something that looks like we're trying to estimate. (2) Solve for MLE. Check it's bias, adjust. (3) Find a function that

"combines" with our pdf. E.g. $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \operatorname{Expo}(\lambda)$. One attempt (which fails) is to try: e^{-cx} , via $E\left[e^{-cx}\right]$

Showing Unbiased Estimators fail to exist Estimators map observed data to estimates. Let t_i be the value our estimator takes on when we observe x = i. Using LOTUS, $E_{\theta}[\hat{\theta}] = \sum_{i=1}^{n} t_i Pr(X = i)$. Sometimes, the form of this expectation implies we can't be unbiased.

Estimators - Consistency

- **Definition** An estimator $\hat{\theta}_n$ is a consistent estimator of a parameter θ if $\hat{\theta}_n \xrightarrow{P} \theta$ for all $\theta \in \Theta$.
- **Lemma** Suppose $\mu = E_{\mu}(X_1)$ is finite, and let \bar{X}_n be the usual sample mean of an i.i.d. sample $X_1, ..., X_n$. If α_n is any sequence such that $\alpha_n \to 1$, then $\alpha_n \bar{X}_n$ is a consistent estimator of μ .
- **Thrm.** If $E(X_n) \to \alpha \in \mathbb{R}$ and $Var(X_n) \to 0$, then $X_n \xrightarrow{P} \alpha$, via Chebyschev's Inequality and the definition of convergence in probability. These conditions are sufficient, but not necessary!
- **Corollary** If $E_{\theta}(\hat{\theta}_n) \to \theta$ and $Var_{\theta}(\hat{\theta}_n) \to 0$ for all $\theta \in \Theta$, then $\hat{\theta}_n$ is a consistent estimator of θ . These conditions are sufficient, but not necessary!.
- **Regularity Conditions 1.** The data $\mathbf{X} = (X_1, ..., X_n)$ is an i.i.d.
 - sample with likelihood $L_{\boldsymbol{x}}(\theta) = \prod_{i=1}^{n} L_{x_i}(\theta)$ 2. The parameter

space Θ is an open subset of \mathbb{R} (note that $\Theta = \mathbb{R}$ is allowed) **3.** The set $\chi = \{x_1 \in \mathbb{R} : L_{x_1}(\theta) > 0\}$ (called the support) does not depend on θ . **4.** If $L_{x_1}(\theta_1) = L_{x_1}(\theta_2)$ for all $x_1 \in \chi$ (except possibly for some set of values with probability zero), then $\theta_1 = \theta_2$. **5.** The likelihood $L_{x_1}(\theta)$ must satisfy certain smoothness conditions as a function of θ .

Thrm Let $\hat{\theta_n}$ be the MLE of θ based on the sample $X_n = (X_1, ..., X_n)$. Then under the regularity conditions above, $\hat{\theta}_n$ is a consistent estimator of θ .

Bias Vs. Consistency

Let $Y_1, ..., Y_n \stackrel{i.i.d.}{\sim} Bern(\theta)$. Example estimators, $\hat{\theta}$, for θ :

	Consistent	Not Consistent
Unbiased	$\frac{\sum_{i=1}^{n} Y_i}{n}$	Y_1
Not Unbiased	$(1+\frac{1}{n})\frac{\sum_{i=1}^{n}Y_{i}}{n}$	1

Example Suppose that $\hat{\theta}$ is an unbiased estimator for θ . Is $\hat{\theta}^2$ unbiased for θ^2 ? No. Although $E_{\theta}[\hat{\theta}] = \theta$, $E_{\theta}[\hat{\theta}^2] = \left(E_{\theta}[\hat{\theta}]\right)^2 + Var_{\theta}(\hat{\theta}) = \theta^2 + Var(\hat{\theta}^2) \ge \theta^2$, where

 $Var_{\theta}(\hat{\theta})$ non-zero unless our estimator is a constant.

Conjugate i nor Examples					
Parameter	Conjugate Prior	Prior Hyper	Post. Hyper		
\boldsymbol{p} prob vector, k	Dirichlet	α	$\alpha + (c_1,, c_k)$ (c_i is num. obs. in cat i)		
M (target members)	Beta-binomial	$n=N,\alpha,\beta$	$\alpha + \sum_{i=1}^{n} x_i, \beta + \sum_{i=1}^{n} N_i - \sum_{i=1}^{n} x_i$		
μ	Norm	μ, σ^2	$\frac{\left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^{n} x_i}{\sigma^2}\right)}{\left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)}, \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1}$		
σ^2	Inv. Gamma	lpha,eta	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n} n(x_i - \mu)^2}{2}$		
σ^2	Scaled Inv. χ^2	ν, σ^2	$\nu + n, \frac{\nu \sigma_0^2 + \sum_{i=1}^n (x_i - \mu)^2}{\nu + n}$		
U(0, heta)	Pareto	x_m, k	$max\{x_1,, x_n, x_m\}, k+n$		
k (shape)	Gamma	lpha,eta	$ \begin{aligned} \alpha + n, \beta + \sum_{i=1}^{n} \ln\left(\frac{x_i}{x_m}\right) \\ \alpha + n, \beta + \sum_{i=1}^{n} x_i^{\beta} \end{aligned} $		
θ	Inv. Gamma	α, β	$\alpha + n, \beta + \sum_{i=1}^{n} x_i^{\beta}$		
β (inv. scale)	Gamma	$lpha_0,eta_0$	$\alpha_0 + n\alpha, \beta_0 + \sum_{i=1}^{n-1} \frac{1}{x_1}$		
	Parameter p prob vector, kM (target members) μ σ^2 σ^2 σ^2 $U(0, \theta)$ k (shape) θ	Parameter p prob vector, k M (target members)Conjugate Prior Dirichlet Beta-binomial μ Norm σ^2 Inv. Gamma σ^2 Scaled Inv. χ^2 $U(0, \theta)$ Pareto k (shape)Gamma θ Inv. Gamma	Parameter p prob vector, k M (target members)Conjugate Prior Dirichlet Beta-binomialPrior Hyper α $n = N, \alpha, \beta$ μ Norm μ, σ^2 σ^2 Inv. Gamma α, β σ^2 Scaled Inv. χ^2 ν, σ^2 $U(0, \theta)$ Pareto x_m, k k (shape)Gamma α, β		

Asymptotic Distribution - MLE

Score The score or score-function is simply $\ell'_{\mathbf{X}}(\theta) = \sum_{i=1}^{n} \ell'_{X_i}(\theta).$

Information The information or Fisher Information is $I_n(\theta) = E_{\theta} \left[\{ \ell_{\boldsymbol{X}}'(\theta) \}^2 \right]$

Lemma Under Regularity Conditions, $E_{\theta}[\ell'_{\mathbf{X}}(\theta)] = 0$, and

$$I_n(\theta) = \operatorname{Var}\left[\ell'_{\boldsymbol{X}}(\theta)\right] = -E_{\theta}\left[\ell''_{\boldsymbol{X}}(\theta)\right] = -nE_{\theta}\left[\ell''_{X_1}(\theta)\right]$$

Information per Observation $I_1(\theta) = -E_{\theta} \left[\ell_{X_1}^{\prime\prime}(\theta) \right]$

Thrm. Let $\hat{\theta}_n$ be a maximum likelihood estimator of θ based on the sample $\boldsymbol{X} = (X_1, ..., X_n)$. Then under regularity conditions,

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{D} \mathcal{N}\left[0, \frac{1}{I_1(\theta)}\right]$$

Proof The basic idea is to begin with a Taylor Expansion of $\ell'_{\mathbf{X}_{n}}(\hat{\theta}_{n})$ around θ :

 $\ell_{\mathbf{X}_{n}}^{\ell_{n}}(\hat{\theta}_{n}) = \ell_{\mathbf{X}_{n}}^{\prime}(\theta) + (\hat{\theta}_{n} - \theta)\ell_{\mathbf{X}_{n}}^{\prime}(\theta) + \dots, \text{ where we ignore higher order terms based on regularity conditions. Observe that } \ell_{\mathbf{X}_{n}}^{\prime}(\hat{\theta}_{n}) = 0, \text{ so rearrange and multiply by } \sqrt{n} \text{ to get:}$

$$\begin{split} &\sqrt{n}(\hat{\theta}_n - \theta) \approx -\sqrt{n} \left[\frac{\ell_{\mathbf{X}_n}(\theta)}{\ell_{\mathbf{X}_n}^{\prime\prime}(\theta)} \right] = \frac{\sqrt{n} \left[\frac{1}{n} \ell_{\mathbf{X}_n}^{\prime\prime}(\theta) - 0 \right]}{-\frac{1}{n} \ell_{\mathbf{X}_n}^{\prime\prime}(\theta)}. \text{ Note that } \\ & E_{\theta} \left[\ell_{\mathbf{X}_n}^{\prime}(\theta) \right] = 0 \text{ and that } \operatorname{Var} \left[\ell_{\mathbf{X}_n}^{\prime}(\theta) \right] = I_1(\theta), \text{ then by } \\ & \operatorname{CLT:} \sqrt{n} \left[\frac{1}{n} \ell_{\mathbf{X}_n}^{\prime}(\theta) - 0 \right] \xrightarrow{D} \mathcal{N} \left[0, I_1(\theta) \right]. \text{ Also observe that } \\ & \text{the WLLN implies} \end{split}$$

 $\begin{aligned} &-\frac{1}{n}\ell_{\boldsymbol{X}_{n}}^{\prime\prime}(\theta) = -\frac{1}{n}\sum_{i=1}^{n}\ell_{X_{i}}^{\prime\prime}(\theta) \xrightarrow{P} - E_{\theta}\left[\ell_{\boldsymbol{X}_{1}}^{\prime\prime}(\theta)\right] = I_{1}(\theta) \\ &\text{Finally, by Slutsky's Thrm., } \sqrt{n}(\hat{\theta}_{n}-\theta) \xrightarrow{D} \mathcal{N}\left[0,\frac{1}{I_{1}(\theta)}\right] \\ &\text{since the asymptotic variance is } I_{1}(\theta)/\left[I_{1}(\theta)\right]^{2} = 1/I_{1}(\theta) \end{aligned}$

Observed Information Define the random variable

 $J_n = -\ell_{\mathbf{X}_n}^{\prime\prime}(\hat{\theta}_n^{mle})$. Under regularity conditions, $\frac{J_n}{n}$ is a consistent estimator of $I_1(\theta)$ i.e. $\frac{J_n}{n} \stackrel{P}{\to} I_1(\theta)$ for all $\theta \in \Theta$

Lemma Using Slutsky's and above theorem:

$$\sqrt{J_n}(\hat{\theta}_n^{mle} - \theta) = \sqrt{\frac{J_n}{I_1(\theta)}} \sqrt{nI_1(\theta)}(\hat{\theta}_n^{mle} - \theta) \xrightarrow{D} \mathcal{N}(0, 1)$$

Asymptotic Efficiency

- Asymptotic Variance For estimators which can be categorized by: $\sqrt{n}(\tilde{\theta}_n - \theta) \xrightarrow{D} \mathcal{N}[0, v(\theta)]$ for some function $v(\theta)$...the asymptotic variance of $\tilde{\theta}_n$ is given by $v(\theta)$, even though $\operatorname{Var}(\tilde{\theta}_n) = \frac{v(\theta)}{r}$
- Asymptotic Relative Efficiency If $\tilde{\theta}^{(1)}$ and $\tilde{\theta}^{(2)}$ are estimators of θ such that: $\sqrt{n} \left[\tilde{\theta}^{(1)} - \theta \right] \xrightarrow{D} \mathcal{N} \left[0, v^{(1)}(\theta) \right]$ and $\sqrt{n} \left[\tilde{\theta}^{(2)} - \theta \right] \xrightarrow{D} \mathcal{N} \left[0, v^{(2)}(\theta) \right]$, then $ARE_{\theta} \left[\tilde{\theta}^{(1)}, \tilde{\theta}^{(2)} \right] = \frac{1/v^{(1)}(\theta)}{1/v^{(2)}(\theta)} = \frac{v^{(2)}(\theta)}{v^{(1)}(\theta)}$
- Interpretation Sample Sizes Suppose that

 $ARE_{\theta}\left[\tilde{\theta}^{(1)}, \tilde{\theta}^{(2)}\right] = 3$, then the distribution of $\tilde{\theta}^{(1)}$ based on sample size *n* is approximately the same as the distribution of $\tilde{\theta}^{(2)}$ based on a sample of 3*n*. In other words, an estimator that's 3x more efficient as another, based on ARE, needs a sample 1/3 of the size in order to achieve the same precision.

Thrm Let $\tilde{\theta}_n$ be an estimator of θ such that

 $\sqrt{n}(\tilde{\theta}_n - \theta) \xrightarrow{D} \mathcal{N}[0, v(\theta)]$ holds for some $v(\theta)$. Then under regularity conditions, $v(\theta) \ge [I_1(\theta)]^{-1}$

Asymptotic Efficiency An estimator for which $\sqrt{n}(\tilde{\theta}_n - \theta) \stackrel{D}{\longrightarrow} \mathcal{N}[0, v(\theta)]$ holds with $v(\theta) = [I_1(\theta)]^{-1}$ is called asymptotically efficient.

Corollary Let $\hat{\theta}_n^{mle}$ be the MLE estimator of θ based on the sample $\boldsymbol{X}_n = (X_1, ..., X_n)$. Then under regularity conditions, the estimator $\hat{\theta}_n^{mle}$ is asymptotically efficient.

Example - Efficiency of Bayes Estimator Let

 $X_{1}, ..., X_{n} \stackrel{i. \sim d}{\sim} \operatorname{Pois}(\lambda), \text{ where } \lambda > 0 \text{ is unknown. It can be shown that the posterior mean of } \lambda \text{ under a Gamma}(a, b)$ prior is: $\hat{\lambda}^{B} = \frac{a + \sum_{i=1}^{n} X_{i}}{b+n} = \left(\frac{n}{b+n}\right) \bar{X}_{n} + \left(\frac{b}{b+n}\right) \frac{a}{b}.$ Now observe that $\sqrt{n}(\hat{\lambda}^{B} - \lambda) = \sqrt{n} \left[\left(\frac{n}{b+n}\right) \bar{X}_{n} + \left(\frac{b}{b+n}\right) \frac{a}{b} \right] - \sqrt{n} \left[\left(\frac{n}{b+n}\right) \lambda + \left(\frac{b}{b+n}\right) \lambda \right]$ $= \underbrace{\left(\frac{n}{b+n}\right)}_{\rightarrow 1} \underbrace{\sqrt{n}(\bar{X}_{n} - \lambda)}_{D \in \mathcal{N}(0, [I_{1}(\theta)]^{-1})} + \underbrace{\sqrt{n}\left(\frac{b}{b+n}\right)\left(\frac{a}{b} - \lambda\right)}_{\rightarrow 0}$

 $\stackrel{D}{\to} \mathcal{N}\left[0, \frac{1}{I_1(\theta)}\right] \text{by Slutsky's Theorem. Thus } \hat{\lambda}^B \text{ is also asymptotically efficient.}$

Hypothesis Testing

Simple A hypothesis is *simple* if it fully specifies the distribution of the data (including all unknown parameter values).

Composite A hypothesis is *composite* if it is not simple.

- **Examples** Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$ **1.** If $H_0: \mu = 40$ and $H_1: \mu = 45$ with σ^2 known. H_0 and H_1 are both simple. **2.** If $H_0: \mu = 40$ and $H_1: \mu \neq 40$ with σ^2 known. H_0 is simple, and H_1 composite. **3.** If $H_0: \mu = 40$ and $H_1: \mu \neq 40$ with σ^2 unknown. H_0 and H_1 are both composite. **4.** If $H_0: \mu \leq 40$ and $H_1: \mu > 40$. H_0 and H_1 are both composite. **5.** If $H_0: (\mu, \sigma^2) = (40, 9)$ and $H_1: (\mu, \sigma^2) \neq (40, 9)$. H_0 simple and H_1 composite.
- **Nested Regions** Note that if $c_1 > c_2$, then $R_{c_1} \subseteq R_{c_2}$.
- **Good Tests** Mathematically, we desire that $P_{\theta}(\mathbf{X} \in R)$ tends to be higher for $\theta \in \Theta_1$ than for $\theta \in \Theta_0$. The perfect test would have $P_{\theta}(\mathbf{X} \in R) = 1 \forall \theta \in \Theta_1$
- **Type I Error** A type I error occurs if we reject H_0 when it's actually true. i.e. if $\theta \in \Theta_0$ and $X \in R$.
- **Type II Error** A *type II error* occurs if we fail to reject H_0 when it's actually false. i.e. $\theta \in \Theta_1$ but $X \notin R$.

Truth	Data	Decision	Outcome
$H_0: \theta \in \Theta_0$	$X \not\in R$	Fail to reject	Correct Decision
$H_0: \theta \in \Theta_0$	$\boldsymbol{X} \in R$	Reject H_0	Type I Error
$H_1: \theta \in \Theta_1$	$oldsymbol{X} ot\in R$	Fail to reject	Type II Error
$H_1: \theta \in \Theta_1$	$\boldsymbol{X} \in R$	Reject H_0	Correct Decision

Power Function

 $Power(\theta) = Pr_{\theta}(\boldsymbol{X} \in R) = \begin{cases} P_{\theta}(\text{type I error}) & : \theta \in \Theta_{0} \\ 1 - P_{\theta}(\text{type II error}) & : \theta \in \Theta_{1} \end{cases}$

- **Error Trade-Off** If we increase c, then we tend to decrease $P_{\theta}(\mathbf{X} \in R_c) = P_{\theta}[T(\mathbf{X}) \geq c]$ for all θ . This decreases the probability of a type I error but increases the probability of type II error. If we decrease c, then we tend to increase $P_{\theta}(\mathbf{X} \in R) = P_{\theta}[T(\mathbf{X}) \geq c]$ for all θ . This decreases the probability of a type II error but increases the probability of a type II error but increases the probability of a type I error.
- Level of a test is any $\alpha \in \mathbb{R}$ such that $Power(\theta) \leq \alpha$ for all $\theta \in \Theta_0$. (an "upper-bound" for a type I error)
- **Size** of a test is $sup_{\theta \in \Theta_0} Power(\theta)$. (max type I error probability)
- Achieving Specified Size If the distribution of $T(\mathbf{X})$ is continuous, there exists a choice of the critical value c that achieves size α . We want to find a value $c \in R$ such that $\alpha = Pr_{\theta_0} [T(\mathbf{X}) \ge c] = Pr_{\theta_0} [T(\mathbf{X}) > c] = 1 - F_{\theta_0}^{[T(\mathbf{X})]}(c)$. If the distribution of $T(\mathbf{X})$ is discrete, there may not exist a c such that $Pr_{\theta_0} [T(\mathbf{X}) \ge c]$, in which case we typically try and find a test with size less than α so it still has level α .
- **P-Values** Suppose that we observe $\boldsymbol{X} = \boldsymbol{x}_{obs}$, then the p-value of the test with statistic $T(\boldsymbol{X})$ for the observed data is: $p(\boldsymbol{x}_{obs}) = \sup_{\boldsymbol{\theta} \in \Theta_0} Pr_{\boldsymbol{\theta}} [T(\boldsymbol{X}) \geq T(\boldsymbol{x}_{obs})].$
- **Thrm.** Let R_c be a rejection region of the form $R_c = \{ \boldsymbol{x} : T(\boldsymbol{X}) \geq c \}$, where c is the smallest number such that the test associated with R_c has level α . Then $\boldsymbol{x}_{obs} \in R_c \iff p(\boldsymbol{x}_{obs}) \leq \alpha$.
- **Proof** Suppose that $\boldsymbol{x}_{obs} \in R_c$. Then $T(\boldsymbol{X}_{obs}) \geq c$, so $p(\boldsymbol{x}_{obs}) = \sup_{\boldsymbol{\theta} \in \Theta_0} Pr_{\boldsymbol{\theta}} [T(\boldsymbol{X}) \geq T(\boldsymbol{x}_{obs})] \leq$ $\sup_{\boldsymbol{\theta} \in \Theta_0} Pr_{\boldsymbol{\theta}} [T(\boldsymbol{X}) \geq c] \leq \alpha$, since the test has level α . Now suppose instead that $\boldsymbol{x}_{obs} \notin R_c$. Then $T(\boldsymbol{x}_{obs}) < c$, so $p(\boldsymbol{x}_{obs}) = \sup_{\boldsymbol{\theta} \in \Theta_0} Pr_{\boldsymbol{\theta}} [T(\boldsymbol{X}) \geq T(\boldsymbol{x}_{obs})] > \alpha$, since otherwise c would not be the smallest number such that the test associated with R_c has level α
- **Corollary** An equivalent way to make the final decision in a hypothesis test is to calculate the p-value $p(\boldsymbol{x}_{obs})$ for the observed data \boldsymbol{x}_{obs} and reject H_0 at level α if and only if $p(\boldsymbol{x}_{obs}) \leq \alpha$.

Likelihood Ratio Test

- **General Method** Sometimes, it's not clear which test-statistic to use. The LRT is a general method based on the likelihood function, $L_{\boldsymbol{x}}(\theta)$ and the sets Θ_0 and Θ_1 .
- **Definition** Let $\Theta = \Theta_0 \cup \Theta_1$. The Likelihood Ratio Statistic is defined as $\Lambda(\mathbf{X}) = \frac{\sup_{\theta \in \Theta_0} L_{\mathbf{x}}(\theta)}{\sup_{\theta \in \Theta} L_{\mathbf{x}}(\theta)}$, which rejects H_0 if and only if $\Lambda(\mathbf{X}) \leq k$, where $k \in (0, 1)$ is chosen to specify the level of the test. By definition, $0 \leq \Lambda(\mathbf{X}) \leq 1$.
- Simple Null If 1. The null hypothesis is simple $(H_0: \theta = \theta_0)$ and 2. The MLE $\hat{\theta}_n^{mle}$ of θ on the parameter space $\Theta = \Theta_0 \cup \Theta_1$ exists, then $\Lambda(\mathbf{X}) = \frac{L_{\mathbf{x}}(\theta_0)}{L_{\mathbf{x}}(\hat{\theta}_n^{mle})}$
- **Example** Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} \operatorname{Expo}(\lambda)$, where $\lambda > 0$. $H_0: \lambda = 2$ and $H_1: \lambda \neq 2$. Then, $L_{\boldsymbol{x}}(\lambda) = \lambda^n \exp\left(-\lambda \sum_{i=1}^n X_i\right)$. Further, $\hat{\lambda}_n^{mle} = (\bar{X}_n)^{-1}$. Then, $L_{\boldsymbol{x}}(2) = 2^n \exp\left(-2\sum_{i=1}^n X_i\right) = \exp\left[-n\left(2\bar{X}_n - \log 2\right)\right]$,

and

$$L_{\boldsymbol{x}}(\hat{\lambda}_{n}^{mle}) = \left(\frac{n}{\sum_{i=1}^{n} X_{i}}\right)^{n} \exp(-n) = \exp\left[-n\left(1 + \log \bar{X}_{n}\right)\right].$$
The LRT is given by

$$\Lambda(\boldsymbol{X}) = \frac{L_{\boldsymbol{x}}(2)}{L_{\boldsymbol{x}}(\hat{\lambda}_{n}^{mle})} = \frac{\exp\left[-n(2\bar{X}_{n} - \log 2)\right]}{\exp\left[-n(1 + \log \bar{X}_{n})\right]} =$$

$$\exp\left[n\left(1 + \log 2 + \log \bar{X}_{n} - 2\bar{X}_{n}\right)\right] = \left[2\bar{X}_{n} \exp\left(1 - 2\bar{X}_{n}\right)\right]^{n}.$$
Ultimately, LRT rejects H_{0} if and only if

$$\left[2\bar{X}_{n} \exp\left(1 - 2\bar{X}_{n}\right)\right]^{n} \leq k.$$
 Equivalently, reject if
 $\bar{X}_{n} \exp\left(-2\bar{X}_{n}\right) \leq (2e)^{-1}k^{1/n}$

- **Composite Null** In this case, finding the numerator of $\Lambda(\mathbf{X})$ typically requires first maximizing the likelihood function subject to the constraints of H_0 , then evaluating the likelihood at this point.
- $$\begin{split} & \textbf{Example Let } X_1, ..., X_n \overset{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2), \text{ where } \mu \in \mathbb{R} \text{ and } \sigma^2 > 0 \\ & \text{ are both unknown. } H_0: \mu = \mu_0, H_1: \mu \neq \mu_0 \text{ for some } \\ & \mu_0 \in \mathbb{R}. \text{ The numerator of } \Lambda(\boldsymbol{X}) \text{ is given by } \\ & \text{sup}_{\sigma^2 > 0} L_{\boldsymbol{x}}(\mu_0, \sigma^2) = -\frac{n}{n\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (X_i \mu_0)^2 = 0 \iff \\ & \tilde{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu_0)^2, \text{ since this value is indeed a } \\ & \text{maximum. Recall the unconstrained MLE of } \mu \text{ and } \sigma^2 \text{ are given by: } \hat{\mu} = \bar{X}_n \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2. \text{ The LRT } \\ & \text{ is given by: } \\ & \Lambda(\boldsymbol{X}) = \frac{(2\pi\tilde{\sigma}_0^2)^{-n/2} \exp[-(2\tilde{\sigma}_0^2)^{-1}\sum_{i=1}^n (X_i \mu_0)^2]}{(2\pi\tilde{\sigma}^2)^{-n/2} \exp[-(2\tilde{\sigma}^2)^{-1}\sum_{i=1}^n (X_i \mu_0)^2]} = \\ & \frac{(\tilde{\sigma}_0^2)^{-n/2} \exp[-n/2]}{(\tilde{\sigma}^2)^{-n/2} \exp[-n/2]} = \left(\frac{\hat{\sigma}_0^2}{\tilde{\sigma}_0^2}\right)^{n/2} = \left[\frac{\sum_{i=1}^n (X_i \bar{X}_n)^2}{\sum_{i=1}^n (X_i \mu_0)^2}\right]^{n/2}. \\ & \text{Observe that } \\ & \sum_{i=1}^n (X_i \mu_0)^2 = \sum_{i=1}^n (X_i \bar{X}_n + \bar{X}_n \mu_0)^2 = \\ & \sum_{i=1}^n (X_i \bar{X}_n)^2 + n(\bar{X}_n \mu_0)^2 + 2(\bar{X}_n \mu_0) \sum_{i=1}^n (X_i \bar{X}_n) + n(\bar{X}_n \mu_0)^2. \text{ Then,} \\ & \Lambda(\boldsymbol{X}) = \left[\frac{\sum_{i=1}^n (X_i \bar{X}_n)^2 + n(\bar{X}_n \mu_0)^2}{\sum_{i=1}^n (X_i \bar{X}_n)^2}\right]^{-n/2} = \\ & \left[1 + \frac{n(\bar{X}_n \mu_0)^2}{\sum_{i=1}^n (X_i \bar{X}_n)^2}\right]^{-n/2} = \left[1 + \frac{(\bar{X}_n \mu_0)^2}{\sqrt{\tilde{\sigma}^2/(n-1)}} = \frac{|\bar{X}_n \mu_0|}{\sqrt{\tilde{\sigma}^2/n}}\right] \end{aligned}$$

where $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ is the unbiased sample variance. If H_0 true, then $T(\boldsymbol{X})$ is the distribution of the absolute value of a Student's T random variable.

Wald Test

- **Background** Under suitable regularity conditions, we know the asymptotic distribution of MLE's is normal: $\sqrt{I_n(\hat{\theta}_n^{mle})}(\hat{\theta}_n^{mle} - \theta) \xrightarrow{D} \mathcal{N}(0, 1) \text{ and also that}$ $\sqrt{J_n}(\hat{\theta}_n^{mle} - \theta) \xrightarrow{D} \mathcal{N}(0, 1), \text{ where } J_n = -\ell_{\mathbf{X}_n}^{\prime\prime}(\hat{\theta}_n^{mle})$ **Definition** Test $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$, with size α , by rejecting H_0 if and only if $\sqrt{I_n(\hat{\theta}_n^{mle})}|\hat{\theta}_n^{mle} - \theta_0| \ge c$, where **Reje** c is the number such that $Pr(|Z| \ge c) = \alpha$ for a standard normal RV Z. Alternatively, reject $H_0 \iff \sqrt{J_n}|\hat{\theta}_n^{mle} - \theta_0| \ge c$.
- **Example** Let $X_1, ..., X_n \stackrel{i.d.}{\sim} \operatorname{Expo}(\lambda)$, where $\lambda > 0$. Test $H_0 : \lambda = 2$ against $H_1 : \lambda \neq 2$. Recall that $\hat{\lambda}_n^{mle} = (\bar{X}_n)^{-1}$. Note that $\ell_{\mathbf{X}_n}''(\lambda) = \frac{\partial^2}{\partial \lambda^2} \left(n \log \lambda - \lambda \sum_{i=1}^n X_i \right) = -\frac{n}{\lambda^2}$. So, $I_n(\lambda) = -E_{\lambda}[\ell_{\mathbf{X}_n}'(\lambda)] = n/\lambda^2$, and hence $I_n(\hat{\lambda}_n^{mle}) = \frac{n}{(\hat{\lambda}_n^{mle})^2}$. Similarly, $J_n = -\ell_{\mathbf{X}_n}(\hat{\lambda}_n^{mle}) = \frac{n}{(\hat{\lambda}_n^{mle})^2}$. The Wald Tests for either

form are identical, in this case:

$$\begin{split} \sqrt{I_n(\hat{\lambda}_n^{mle})} |\hat{\lambda}_n^{mle} - 2| &= \sqrt{J_n} |\hat{\lambda}_n^{mle} - 2| = \\ \sqrt{\frac{n}{(\hat{\lambda}_n^{mle})^2}} |\hat{\lambda}_n^{mle} - 2| &= \sqrt{n} |1 - \frac{2}{\hat{\lambda}_n^{mle}}| = \sqrt{n} |1 - 2\bar{X}_n| \end{split}$$

Score Test

- **Background** Recall that under regularity conditions, $\sqrt{n} \left[\frac{1}{n} \ell'_{\boldsymbol{X}_n}(\theta) - 0 \right] = \frac{1}{\sqrt{n}} \ell'_{\boldsymbol{X}_n}(\theta) \xrightarrow{D} \mathcal{N}[0, I_1(\theta)].$ It follows that $\frac{1}{\sqrt{nI_1(\theta)}} \ell'_{\boldsymbol{X}_n}(\theta) = \frac{1}{\sqrt{I_n(\theta)}} \ell'_{\boldsymbol{X}_n}(\theta) \xrightarrow{D} N(0, 1)$
- **Definition** Test $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$, with approximate size α . Reject $H_0 \iff \frac{1}{\sqrt{I_n(\theta_0)}} |\ell'_{\boldsymbol{X}_n}(\theta_0)| \ge c$, where c is the number such that $Pr(|Z| \ge c) = \alpha$ for a standard normal RV Z.
- **Example** Let $X_1, ..., X_n \stackrel{i.d.}{\sim} \operatorname{Expo}(\lambda)$, where $\lambda > 0$. Test $H_0 : \lambda = 2$ against $H_1 : \lambda \neq 2$. The score function is: $\ell'_{\boldsymbol{X}_n}(\lambda) = \frac{\partial}{\partial \lambda} \left(n \log \lambda \lambda \sum_{i=1}^n X_i \right) = \frac{n}{\lambda} \sum_{i=1}^n X_i = n \left(\frac{1}{\lambda} \bar{X}_n \right)$, where $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$. From previous example, $I_n(\lambda) = n/(\lambda)^2$. Then, the score test statistic is given by: $\frac{1}{\sqrt{I_n(2)}} |\ell'_{\boldsymbol{X}_n}(2)| = \frac{1}{\sqrt{n/4}} \left| n \left(\frac{1}{2} \bar{X}_n \right) \right| = \sqrt{n} |1 2\bar{X}_n|$. The score test rejects H_0 if and only if the statistic is at least as large as some value, c, determined by the size.

Asymptotic Likelihood Ratio Tests

- **Thrm.** Let $\Lambda(\boldsymbol{X}_n)$ be the likelihood ratio test for testing $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$, based on sample \boldsymbol{X}_n . Then under regularity conditions: $-2\log\Lambda(\boldsymbol{X}_n) \xrightarrow{D} \chi_1^2$, if $\theta = \theta_0$.
- **Proof** Let $\hat{\theta}_n^{mle}$ denote the MLE of θ . A Taylor Expansion of $\ell_{\boldsymbol{X}_n}(\theta_0)$ around $\ell_{\boldsymbol{X}_n}(\hat{\theta}_n^{mle})$:

$$\ell_{\boldsymbol{X}_{n}}(\theta_{0}) = \ell_{\boldsymbol{X}_{n}}(\hat{\theta}_{n}) + \ell'_{\boldsymbol{X}_{n}}(\hat{\theta}_{n})(\theta_{0} - \hat{\theta}_{n}) + \frac{1}{2}\ell''_{\boldsymbol{X}_{n}}(\theta_{0} - \hat{\theta}_{n})^{2} + \\ = \ell_{\boldsymbol{X}_{n}}(\hat{\theta}_{n}) + \frac{1}{2}\ell''_{\boldsymbol{X}_{n}}(\theta_{0} - \hat{\theta}_{n})^{2} + \dots$$

since $\ell'_{\mathbf{X}_n}(\hat{\theta}_n) = 0$. Further, the regularity conditions allow us to ignore higher-order terms. Now, observe that

$$-2\log\Lambda(\boldsymbol{X}_n) = -2\log\left[\frac{L_{\boldsymbol{X}_n}(\theta_0)}{L_{\boldsymbol{X}_n}(\hat{\theta}_n)}\right] = -2\left[\ell_{\boldsymbol{X}_n}(\theta_0) - \ell_{\boldsymbol{X}_n}(\hat{\theta}_n)\right] \approx -\ell_{\boldsymbol{X}_n}''(\hat{\theta}_n)(\theta_0 - \hat{\theta}_n)^2 \text{ by the}$$

Taylor Expansion. Then, $-2\log\Lambda(\boldsymbol{X}_n) \approx -\ell_{\boldsymbol{X}_n}''(\hat{\theta}_n)(\theta_0 - \hat{\theta}_n)^2 = J_n(\hat{\theta}_n - \theta_0)^2 = \left[\sqrt{J_n}(\hat{\theta}_n - \theta_0)\right]^2$. If the true value of $\theta = \theta_0$, then
 $\sqrt{J_n}|\hat{\theta}_n - \theta| \xrightarrow{D} \mathcal{N}(0, 1) \implies \left[\sqrt{J_n}|\hat{\theta}_n - \theta|\right]^2 \xrightarrow{D} \chi_1^2$, using

continuous mapping thrm. for convergence in distribution.

- **Rejection Region** A test of $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$ with approximate size α is to reject $H_0 \iff -2\log \Lambda \mathbf{X}_n \geq C$, where *C* is the number such that $Pr(W \geq C) = \alpha$ for a χ_1^2 R.V. W, or equivalently, the number such that $Pr(|Z| \geq \sqrt{C}) = \alpha$ for a $\mathcal{N}(0, 1)$ R.V. Z.
- **Example** Let $X_1, ..., X_n \stackrel{i.d.}{\sim} \operatorname{Expo}(\lambda)$, where $\lambda > 0$. Test $H_0 : \lambda = 2$ against $H_1 : \lambda \neq 2$. Recall the LRT is: $\Lambda(\mathbf{X}_n) = [2\bar{X}_n \exp(1 2\bar{X}_n)]^n$. Note that $-2\log\Lambda(\mathbf{X}_n) = -2n[1 + \log(2\bar{X}_n) 2\bar{X}_n]$. To obtain LRT with size α , reject $H_0 \iff$ test statistic is at least as large as some critical value C. To obtain size $\alpha = 0.05$, take $\sqrt{C} \approx 1.96$, hence $C \approx 3.84$.

Summary of Asymptotic Tests

- **Similarities** The Wald Test, Score Test, and LRT provide different ways to construct hypothesis tests of $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$, with approximate size α for large n.
- **Basis:** Wald is based on the difference between θ_0 and $\hat{\theta}_n^{mle}$. **Score** is based on the difference between the slope of the log-likelihood at θ_0 against $\hat{\theta}_n^{mle}$. **LRT** is based on the difference between the likelihood at θ_0 against $\hat{\theta}_n$.
- **Computation:** Wald, when based on J_n , only requires the behavior of the log-likelihood at and around it's global max, $\hat{\theta}_n^{mle}$. Score only involves the behavior of the log-likelihood at and around θ_0 . LRT involves behavior of likelihood at both θ_0 and $\hat{\theta}_n^{mle}$.

Reparametrization Score and LRT invariant, but Wald isn't.

Confidence Intervals

- **Definition** A Confidence Level of a confidence set $C(\mathbf{X})$ for a parameter $\theta \in \Theta$ is a number $\gamma \geq 0$ such that $Pr_{\theta} [\theta \in C(\mathbf{X})] \geq \gamma$ for all $\theta \in \Theta$.
- **Thrm.** For every $\theta_0 \in \Theta$, let R_{θ_0} be the rejection region of a hypothesis test of $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$, with level α . Then $C(\mathbf{X}) = \{\theta_0 \in \Theta : \mathbf{X} \notin R_{\theta_0}\}$ is a confidence set for θ with confidence level 1α .

- **Proof** For every $\theta \in \Theta$, $Pr_{\theta} [\theta \in C(\mathbf{X})] = Pr_{\theta}(X \notin R_{\theta}) = 1 Pr_{\theta}(\mathbf{X} \in R_{\theta}) \ge 1 alpha.$
- $$\begin{split} \mathbf{Example} \ \ & \mathrm{Let} \ X_1, ..., X_n \overset{i \mathrel{\scriptstyle \sim} \sim d}{\sim} \mathcal{N}(\mu, \sigma^2), \ \mathrm{where} \ \mu \in \mathbb{R} \ \mathrm{and} \ \sigma^2 > 0 \\ \mathrm{are \ both \ unknown. \ Let} \ \alpha \in (0,1). \ \mathrm{Begin} \ \mathrm{by \ finding \ a \ test \ of} \\ H_0: \mu = \mu_0 \ \mathrm{against} \ H_1: \mu \neq \mu_0 \ \mathrm{with \ level} \ \alpha. \ \mathrm{The \ LRT \ of} \\ \mathrm{these \ hypotheses \ is \ to \ reject} \ H_0 \ \Longleftrightarrow \ \frac{|\bar{X}_n \mu_0|}{\sqrt{S^2/n}} \geq c. \ \mathrm{Then \ a} \\ \mathrm{confidence \ set \ for} \ \mu \ \mathrm{with \ confidence \ level} \ 1 \alpha \ \mathrm{is \ the \ set \ of} \\ \mathrm{all} \ \mu_0 \in \mathbb{R} \ \mathrm{such \ that} \ \frac{|\bar{X}_n \mu_0|}{\sqrt{S^2/n}} < c \end{split}$$

Wald Confidence Interval The simplest asymptotic CI. Test $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$ reject

 $H_0 \iff \sqrt{I_n(\hat{\theta}_n^{mle})} |\hat{\theta}_n^{mle} - \theta_0| \ge c, \text{ or alternatively}$ $\sqrt{J_n(\hat{\theta}_n^{mle})} |\hat{\theta}_n^{mle} - \theta_0| \ge c, \text{ where } c \text{ is the number such that}$ $Pr(|Z| > c) = \alpha \text{ for } Z \sim \mathcal{N}(0, 1). \text{ Our test fails to reject}$

$$H_0 \iff \left\{ \theta_0 \in \Theta : \hat{\theta}_n - \frac{c}{\sqrt{J_n(\hat{\theta})}} < \theta_0 < \hat{\theta}_n + \frac{c}{\sqrt{J_n(\hat{\theta})}} \right\}$$

Example Let $X_1, ..., X_n \stackrel{i.d.}{\sim} (\lambda)$, where $\lambda > 0$ unknown. Let $\alpha \in (0, 1)$. We found earlier that both versions of Wald reject $H_0 \iff \sqrt{\frac{n}{\hat{\lambda}_n^2}} |\hat{\lambda}_n - \lambda_0| \ge c$. The Wald CI with approximate confidence level $1 - \alpha$ is the set: $\left\{\lambda_0 > 0 : \hat{\lambda}_n - c\sqrt{\frac{\hat{\lambda}_n^2}{n}} < \lambda_0 < \hat{\lambda}_n + c\sqrt{\frac{\hat{\lambda}_n^2}{n}}\right\}$. Note the restriction that $\lambda_0 > 0$ ensures the CI doesn't spill over the

restriction that $\lambda_0 > 0$ ensures the CI doesn't spill over the parameter space.

Score Confidence Interval A score test of $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$ rejects $H_0 \iff \frac{1}{\sqrt{I_n(\theta_0)}} |\ell'_{\mathbf{X}_n}(\theta_0)| \ge c$. The test fails to reject $H_0 \iff \left\{ \theta_0 \in \Theta: \frac{1}{\sqrt{I_n(\theta_0)}} |\ell'_{\mathbf{X}_n}(\theta_0)| < c \right\}$. This is a Score Confidence Set.