
Distributed Min Cut

Eric Lax, Andreas Santucci
Stanford University

June 3rd, 2015

1 Overview

We set out to solve the problem of finding a min cut of a large, un-weighted
and un-directed graph G, where the number of vertices fits on a single machine
but the number of edges does not. In this paper, we will briefly outline previous
approaches to this problem, and then explore two new avenues.

The first is a Karger variant, which finds the min cut with very high prob-
ability. To do this, we develop a distributed minimum spanning tree algorithm
to simulate each iteration of Karger’s algorithm. The run-time of finding the
MST is O(log(n)(mB + n log(n))). The shuffle cost associated with finding MST

is O(n log(n) + B log2(n)). In order to find the min cut, this must be run
O(n2 log(n)) times.

The second approach is an approximation algorithm based on the intuition
that when sampling a graph G, the cut that is most likely to be disconnected is

the min cut. We can find a (1 + ε) approximation of the min cut in O(m log(n)
ε2),

with a shuffle of size O(mp log(n)ε2). Using the same algorithm in a CONGEST

framework [6], we achieve O((D +
√
n log∗(n)) log(n)

ε2) run time with O(n) pro-
cessors.

Below we will show that these approaches yield the fastest distributed min
cut approximation that we are aware of. Finally, we will explore further areas
of research, including potential improvements to our algorithm from effective
resistance, and applying the same methodology to the S-T min cut problem.

2 Literature Review

Karger In David Karger’s 1993 paper [2], “Global Min-cuts in RNC and other
Ramifications of a Simple Mincut algorithm”, he developed an O(mn2 log(n))
algorithm which finds the min cut with high probability. The algorithm re-
peatedly contracts edges at random until only one cut remains. This process
is repeated O(n2 log(n)) times. It was later improved upon in the Karger-Stein
algorithm [3] to run in O(n2 log3(n)) time.

1

Skeleton Graphs In his 1999 paper [5], “Minimum Cuts in Near-Linear
Time”, Karger develops a general methodology computing a skeleton graph and
a tree packing on the resulting skeleton graph, then calculating cut sizes deter-
mined by trees in the packing. This algorithm finds the min cut in O(m log3(n))
time.

Random Sampling Techniques In his 2000 paper [7], “Random Sampling
in Cut, Flow, and Network Design Problems”, Karger turns this approach into

a (1 + ε) approximation which runs in O(m + n(log(n)
ε)3) time. This approach

has been repeatedly adapted and improved upon.

Most Recent Approximation Algorithm The most recent and best ap-
proximation algorithm we could find to date was published by Danupon Nanongkai
and Hsin-Hao Su, [6] in a paper entitled, “Almost-Tight Distributed Minimum
Cut Algorithms”, which achieves a (1 + ε) approximation in O((

√
n log∗(n) +

D)ε−5 log3(n)) time, where D denotes the diameter of the graph, and log∗(n)
denotes the iterated logarithm. This approach distributes a variant of Karger’s
skeleton approximation with a CONGEST model, in which each node only has
knowledge of its neighbors and n processors are used, each with infinite computa-
tional power. They compute run-time simply as the worst case number of rounds
of communication. This makes comparison with other algorithms difficult. For
example, under this model connected components run in O(D +

√
n log∗(n))

time. We will show that our algorithm, when carried out in a CONGEST
model, actually produces a (1 + ε) approximation in lower run time.

Karger Variants The 2011 paper [9], “Filtering: A Method for Solving
Graph Problems in MapReduce”, Lattanzi, Moseley, Suri, and Vassilvitskii is
the only paper we were able to find which attempts to find min cuts for large
graphs which don’t fit on a single machine.

Their general approach is to arbitrarily weight edges in the range (0, 1), find
a threshold t ∈ (0, 1) such that contracting all edges with weight less than t
results in the largest contracted graph capable of fitting on a single machine.
They then apply Karger-Stein’s algorithm. A downside to this approach is that
a connected components analysis is simultaneously run for many values of t to
find the optimal value of t, leading both to extremely high communication cost
and machine usage. The paper does not actually report the actual run time for
the algorithm. For a point of comparison, we have tried to compute it using
their methodology. In this approach we were generous in order to give us a
higher standard of comparison.1

Each connected components analysis runs in O(mα(m,n)), and its executed
a total of ny times in parallel, where a machine can store O(n1+y) information.
Karger-Stein is then run locally on the remaining graphG′, with n̂ nodes, costing
O(n̂ log3(n̂)) time. This process is repeated n1−

y
2 times in parallel, using a total

1For example, the contraction algorithm run time was unclear, so we omitted it entirely.

2

of O(n1−
y
2+k) machines, where m = k(n)(n−1)

2 . Using this many machines, this
whole process is repeated 1

y2 times, leading to a total run time of

O(mα(m,n)y2 + n̂ log3(n̂)
y2).

3 Distributing Karger through MST

Relating MST and Karger Due to the cut property of MST’s, the low-
est weight edge leaving each connected component must be contained in the
minimum spanning tree. Prim’s algorithm [1] starts with each node as its own
connected component, the lowest weight outgoing edge is found, and used to
extend the connected component. Each iteration across all connected compo-
nents reduces the number of connected components by at least 1/2, therefore
there are at most log(n) rounds required.

3.1 Algorithm

Algorithm 1: Distributed Karger

1 Partition:
2 Place all edges for each node on a single machine
3 Set min-cut to ∞
4 for i = 1 to n2 log(n) do
5 Assign arbitrary weights to each edge
6 Perform Distributed MST
7 Remove maximum weighted edge (We now have a cut)
8 Perform Connected Components Analysis to determine how nodes are

partitioned (return a hash set for each partition, containing the nodes
on each side)

9 Map:
10 Across edges, check for an edge between two partitions using the

two hash-sets
11 Reduce:
12 Return the number of edges between two partitions
13 if smallest cut thus far then
14 update min cut
15 end

16 end
17 Return min-cut

In order to analyze this algorithm, we must analyze how we distribute MST.
We will go over two approaches.

3.1.1 Distributed MST Approach - Low Shuffle Size

General Approach Note that in our Karger algorithm, edges are already
partitioned such that all edges from a vertex are stored on a single machine.

3

To start, consider each node as its own connected component. We perform a
map to find the lowest weight edge from each node, and then a reduce step
to find the lowest weight edge leaving each connected component. Results are
sent back to the driver. The driver finds the lowest weight edge leaving each
connected component, and broadcasts this list to the workers 2, at which point
each machine locally combines connected components. In subsequent iterations,
each machine finds the lowest weight edge from each node leaving its connected
component, and send these results back to a reducer. This is process is repeated
until there are no edges remaining which leave connected components.3

Algorithm 2: Distributed MST (low shuffle size)

1 Set each node as a connected component
2 while Edges exist leaving connected components do
3 Map:
4 For each node, find the lowest weight edge leaving the connected

component which contains that node
5 Reduce:
6 Find the lowest weight edge leaving each connected component
7 Broadcast:
8 Lowest weight edge leaving each connected component to all

machines
9 On each machine, merge connected components together, and in the

process create a hash set for each connected component, which stores
nodes belonging to that component

10 end
11 Return MST

Algorithm Analysis

Finding Lowest Weight Edge Leaving Each Node Finding the lowest
weight edge from each node requires checking each edge, which costs O(mB).
When iterating over edges in the form of (i, j), we check if node j is in the same
connected component as i in constant time using the hash set associated with
the connected component for i. This process is explained in detail below. If j
is not contained in the set, we know the edge leaves the connected component.
Since there are log(n) iterations, the total cost of this operation across iterations

is O(m log(n)
B).

Finding Lowest Weight Edge Leaving Each Component The reduce
step requires an all to one communication of O(n), since each node sends back

2It is worth noting that we can reduce the communication cost and run-time by caching
the lowest weight edge for each node on the driver in the event that it leaves the newly formed
connected component. In the next iteration, we don’t have to check for that nodes lowest
weight edge, which also means less communication.

3This algorithm emerged from a discussion with Swaroop Ramaswamy who discussed with
us how to capture benefits from both of our approaches to MST. Some of the underlying ideas
in this model come from his approach.

4

the lowest weight edge. To actually find the lowest weight edge leaving each
connected component is upper bounded by O(n). In total, the shuffle size is
O(n log(n)) across iterations.

Broadcasting Connected Components In each step, we have a list of edges
which we wish to add to our connected components to combine them. There
is one edge per connected component. We will broadcast this to machines such
that connected components may be updated locally.

Since the number of connected components is reduced by at least 1/2 on
each iteration, the first broadcast requires shuffle size n, the second requires
n/2, the third requires n/4. In general, on each iteration, the shuffle cost of the
broadcast is at most 2−in, where i denotes the iteration number.

Notice that the size of the broadcast is O(n). Since it is broadcast to B
machines, the shuffle cost is O(B log(n)) using bit-torrent broadcasting.

Merging Connected Components In order to merge connected compo-
nents together efficiently and keep track of which nodes belong to each compo-
nent, we require the use of several data structures. We first create a hash map
where the keys consist of the unique node id’s, and the values consist of pointers
to hash sets. When the lowest weight edge leaving each connected component is
broadcast, for each edge (i, j), we use our hash map to look up in constant time
both the hash set containing i, and the hash set containing j. We then merge
these two hash sets, by adding all the elements from the smaller hash set to the
larger hash set. We update the pointers accordingly for the nodes belonging to
the smaller hash set. The smaller hash set is then discarded and no longer used.

This process is deterministic. So, the same hash-sets and maps will appear
on each machine and the driver.

It’s worth noting that we will only move O(n) elements in each iteration.
Since adding an element to a hash set is O(1), this process runs in O(n) time.
Similarly, we are updating maximally O(n) pointers, each pointer can also be
update in O(1) time. Therefore, merging connected components costs O(n).
Since there are at most log(n) iterations required in order to form a minimum
spanning tree, the cost of merging connected components is total O(n log(n)).

Run Time Analysis - Distributed MST (low shuffle cost) Arbitrary
weighting costs O(m/B). Finding the lowest weight edge from each node is

O(m log(n)
B) across iterations. Finding the lowest weight edge from each con-

nected component is O(n). Merging connected components is O(n log(n)). So,

total run time is given by O(m log(n)
B + n log(n)).

Shuffle Size - Distributed MST (low shuffle cost) Finding the lowest
weight edge leaving each connected component requires shuffle size O(n log(n)).
Broadcasting the connected components costs O(B log(n)). The total shuffle
size is given by O(n log(n) +B log(n)).

5

3.1.2 Distributed MST Approach - Low Number Map Reduces

We first find the lowest weight y edges leaving each vertex. Note that in our
Karger algorithm, edges are already partitioned such that all edges from a vertex
are stored on a single machine. Using a max-heap data structure of size limited
to y, we iterate through all deg(vi) edges leaving node vi, and for each, check to
see if its smaller than the max element in the heap O(1) time. If it is, we add it
to the heap which costs O(log(y)) time, and remove the max. If it’s bigger, we
continue to the next item. We then sort the heap into an array in O(y log(y))
time. The total run time across all vertices is given by∑

i deg(vi) log(y)

B
=

2m log(y)

B

Therefore the run time is O(m log(y)
B).

We then perform an all-to-one communication and send the results back to
the driver, with shuffle size O(ny). The driver then checks for the lowest weight
edge leaving each connected component. In order to do this, the driver simply
checks the lowest weight edge leaving each node, meaning the driver will check
n nodes. Since the y edges are already sorted, each node can be checked in
constant time, so this takes a total O(n) time each iteration.

Caveat Note, however, that we must also deal with the case where all y
edges leaving a single node are exhausted in the search for an MST, but we
have more than one connected component remaining. It is then possible that
the minimum weight edge leaving that connected component does not reside
within the driver. Therefore, we no longer attempt to augment this connected
component with any of the remaining outgoing edges from other nodes within
the connected component. If this becomes true of all our connected components,
we can no longer add edges to reduce the number of components.

Since each connected component is at least size y, there are at most n/y
connected components. The size of the broadcast is n, since all we need to
know is which connected component contains each node. We broadcast the list
of connected components back to all machines.

We repeat the process above, considering the next lowest weight y edges from
each node leaving each connected component. The results are sent back to the
driver, with a shuffle size of ny. Notice that the smallest connected component
we could have before running out of outgoing edges on this iteration would be
of size y2.

In the worst case, the number of iterations performed for this process is given
by yx(n) ≥ n, such we that have removed at least n− 1 connected components.
We then have

x =
log(n)

log(y))

Although this is a lower total number of iterations, the shuffle size per iter-
ation is high enough to make our previous algorithm more efficient in the worst

6

case. However, since in applying Karger’s Variant the edge weights are assigned
randomly, the worst case is unlikely to occur4. In future research, we plan to
delve more deeply into finding the expected run time given random assignment
of edge weights. If latency is a factor, this algorithm exhibit increasing returns.

Algorithm 3: Distributed MST (low map-reduces)

1 Set each node as a connected component
2 while Edges exist leaving connected components do
3 Map:
4 Across each node: search for the y lowest weight edges leaving

that node’s connected component
5 Send y lowest weight results back to driver
6 while True do
7 if One connected component remains Or At least one node in

each connected component has exhausted all y edges then
8 break
9 end

10 for Each Connected Component such that none of the nodes have
exhausted all y outgoing edges do

11 Take minimum edge leaving component and use this to merge
two components

12 end

13 end
14 Broadcast:
15 Connected Components to all machines

16 end
17 Return MST

Run Time Analysis (per iteration, low map-reduces) Computing the
minimum spanning tree first requires finding the lowest weight y edges leaving

each vertex. To do this, we use a max-heap data structure, taking O(m log(y)
B)

time. Computing the MST on the driver takes O(ny) time. The total run time

is given by O(m log(y)
B + ny).

Shuffle Size (per iteration, low map-reduces) The algorithm only uses
one all to one communication of size O(ny) and one bit-torrent broadcast costing
O(B log(n)). For each node, the lowest weight y edges are sent back, so on each
iteration the shuffle cost is given by O(ny).

3.2 Algorithm Analysis

Run Time Analysis - Distributed Karger Notice that in the algorithm,
after weighting edges randomly and finding an MST, the largest weight edge

4The worst case is that in each iteration, we only reduce the number of connected compo-
nents by a factor of 1

y
by exhausting all edges leaving a specific node.

7

is removed and connected components analysis is performed to determine how
nodes are partitioned across the cut. The connected components analysis is
O(n) since there are O(n) edges, and can be performed using a simple Prim’s
algorithm. While performing connected components analysis, we accumulate
a hash-set of nodes stored in each side of the partition in a similar fashion to
the method described for the low-run time MST. We then map across edges,
checking to see if the edge spans the cut. Using the hash-set, each edge requires
a constant time check, so the total cost when computed in parallel is given by
O(m/B).

Since computing MST is the bottleneck, and since we need n2 log(n) itera-
tions to run Karger, the total run-time is given by

O((n2 log(n))(m log(n)
B +n log(n))). Note that for B ≥ log(n), this is faster than

Karger’s algorithm.

Shuffle Size - Distributed Karger We have an all to all communication
required by partitioning edges. The cost of this operation is O(m). Notice that
the bottleneck is MST. The total shuffle size is given by O(n log(n)+B log2(n)).

Limitations in Scaling One limitation in scaling is that machines can only
hold O(n) information.

How strongly does Algorithm scale Although this algorithm beats Karger
under certain conditions, it is far from optimal. Even with a large number of
machines, we still have a n log(n) term incurred from MST, and we require
n2 log(n) iterations.

4 Distributed Min Cut Approximation Algorithm

Let c denote the size of the true min cut of G. First, we are going to sample
each edge with probability p. Let G′ be the sub-graph from sampling edges in
G with probability p. We are going to choose p such that G′ is disconnected in
expectation.

Let us examine a simple fully connected graph with nodes A,B,C,D. In
G′, the probability that nodes A and B are disconnected from C and D is a
function of the cut-size AB, defined as ξ. More precisely, the probability that
they are disconnected in G′ equals (1 − p)ξ, since no edge that crosses that
cut can be chosen to be in our sub-graph. The larger the cut, the less likely
it is to be disconnected in G′. By definition, the min-cut is most likely to be
disconnected. If we generate enough random sub-graphs G′, the cut which is
most often disconnected will have size less than (1 + ε) · c with high probability.

Let us define an α cut as a cut whose size is less than or equal to αc. From
Karger[2], the number of α-cuts is less than n2α. Let f(α) be the number of
cuts of size αc.

8

Let Z(α) = # times a cut of size αc is disconnected, y = # of iterations,
and let x denote the probability the min-cut is disconnected, which is given by
(1− p)c. Let µ = E[Z(α)] = y(1− p)αc = yxα.

Theorem 1. It’s highly improbable that cuts of size αc, for α ≥ 3, will be
disconnected most often if we have more than 4√

2
·2 ·3 · (1− ε)2 ln (n) iterations.

Proof. Recognize that Z(1) is the number of times the min-cut is disconnected.
Then, using a Chernoff bound,

Pr

(
Z(1) < (1− ε)µ

)
≤ e(−µε

2)/2

≤ e(−xyε
2)/2

If y ≥ 1
x ln(n) · 1

2ε2 , then Pr

(
Z(1) < (1− ε)µ

)
≤ e− ln(n) = n−1. So we may

say this event is highly unlikely.

Let Pr(α) = Pr

(
Z(α) > Z(1)

)
. From Karger[2] the probability that

any cut is disconnected more often than Z(1) is simply given by the sum of∑
α Pr(α)f(α). Define F (x) =

∑
α≤x f(x), where F (x) ≤ n2x. Taking the

worst case scenario where F (x) = n2x,∀x, we can further relax F (x) to be a
real-valued function rather than restricting it to the space of integers, in which
case f(a) = dF/dα, we can then take the integral∫ ∞

1

Pr(α)
dF

dα
dα

Since it is highly unlikely that Z(1) is less than (1 − ε)xy, then Pr(α) ≤

Pr

(
Z(α) > (1 − ε)xy

)
. We may upper bound the probability that a cut is

more often disconnected than the min-cut. For α ≥ 3:

Pr(Z(α) > (1− ε)yx) = Pr(Z(α)− µ > (1− ε)yx− µ)

≤ Pr(|Z(α)− µ| > (1− ε)yx− yxα)

= Pr

(
|Z(α)− µ| > µ((1− ε)x−(α−1) − 1)

)
≤ exp

[
− yxα

(
(1− ε)yx−(α−1) − 1

)2

/3

]
≈ exp

[
− yxα

(
(1− ε)x−(α−1)

)2

/3

]
= exp

[
− y(1− ε)2x−(α−2)/3

]

9

Now, let y = 4√
2
· 2 · 3 · (1− ε)2 ln (n), then

∫ ∞
3

n2α · ln (n2) Pr(α)dα

=

∫ ∞
3

n2α ln (n2) exp

[
− yx−α+2 · (1− ε)2/3

]
dα

=

∫ ∞
3

n2α ln (n2) exp

[
− lnn

(
1

(1− ε)2

)
· 4√

2
· 6x−α+2 (1− ε)2

3

]
dα

=

∫ ∞
3

n2α ln (n2)n
−(4√

2
·2x−α+2)

dα

=

∫ ∞
3

n
2(α− 4√

2
· 1

xα−2)
ln (n)dα We may non-problematically choose x <

1√
2

(See section on choosing x)

≤
∫ ∞
3

n−2α ln (n2)dα

≤ 1

n6

So clearly for α ≥ 3, we can disregard the possibility that a cut of size αc is
disconnected the most.

Theorem 2. For α < 3, the probability that there exists a cut of size α such
that Z(α) > (1 + ε)E[Z(α)] is minimal.

Proof. Let y = 6 ln(n)
x3ε2 . Define Pr1(α) = Pr(Z(α) > (1 + ε)E[Z(α)])

Using the logic from above, the probability the theorem holds for all α < 3

is given by
∫ 3

1
Pr1(α)dFdα dα

Pr1(α) = Pr(z > µ(1 + ε)) ≤ exp

[
− µε

2

3

]
= exp

[
− yxα · ε

2

3

]
where the inequality follows from a Chernoff Bound. Now taking the integral,

and plugging in for y and dF
dα , we get a value less than 1

n .

10

∫ 3

1

Pr1(α)
dF

dα
dα =

∫ 3

1

exp

[
− yxα · ε

2

3

]
dF

dα
dα

=

∫ 3

1

exp

[
− 3 · 6 ln(n)

x3ε2
· xα · ε

2

3

]
ln(n2)dα

≤
∫ 3

1

(exp[ln(n)])−6 ln(n2)dα

≤
∫ 3

1

n−2α ln(n2)dα

≤
∫ ∞
1

n−2α ln(n2)dα

=
1

n

where the last inequality stems from the fact that n−2α ln(n2) > 0.

Theorem 3. With high probability, the cut which is disconnected most fre-

quently will have a cut size within (1+ε) of the true min-cut c. Let y = 6 ln(n)
x3(ε/2)2 ,

and let x ≤ 1
e .

Proof. By theorem 1 we can ignore the case when α ≥ 3. For α < 3, we know
from theorem 2 that it’s highly probable that Z(α) < (1 + ε

2)yxα (we divide
ε by 2 based on our choice for y). Similarly, we know that Z(1) > (1 − ε

2)yx
with high probability. Further, if Z(α) > Z(1), then it’s highly probable that

yxα > (1 − ε)yx, so solving for α we get α = 1 + ln(1−ε)
ln(x) . Substituting in for

x = 1
e we see that α = 1− ln(1− ε) ≈ 1 + ε. Note that for lower values of x the

approximation is closer to 1.

5 Distributed Min Cut Approximation Algorithm

5.1 Binary Search

Let θ denote the proportion of times that the number of connected components
is in [2, log(m)]. We want to perform binary search to find p such that θ > s
for some s ∈ R such that s ∈ (0, 1). When we create sub-graphs, we will throw
out in expectation less than 1/s which do not meet our criterion. This means
the running time of our algorithm will simply increase by a constant factor. So,
when counting the cuts between connected components, i.e. disconnected cuts,
a full enumeration is 2log(m) = O(m).

We will do this by performing a binary search for p, starting with p = 1/δ,
where δ denotes the min degree of the graph. Sample edges with probability p1

11

to yield graph G′1,1, run connected components, count number of connected com-
ponents. For pi, let us create η sub-graphs, denoted by G′ij for j = 1, 2, . . . , η.
For each sub-graph G′ij , define

θ̂i =
1

η

η∑
j=η

1i{#cc ∈ [2, log(m)]

and,

1↑i = {#cc = 1}
1↓i = {#cc > log(m)}

and correspondingly

θ̂↑i =
1

η

η∑
j=η

1↑i

θ̂↓i =
1

η

η∑
j=η

1↓i

The binary search will sample η times to come up with an estimate for each
of θ̂i, θ̂↑i, and θ̂↓i. If we are confident that θi > s, we may stop our binary

search. Else, we must decide whether to increase or decrease pi. If θ̂↑i > θ̂↓i,

we decrease pi, and similarly if θ̂↓i > θ̂↑i we increase pi.

Theorem 4. We claim we only need a constant number of iterations to deter-
mine whether to increase or decrease each pi, or stop the search entirely.

Proof. Notice
∑
j 1j is a binomial random variable, and the same is true for

the random variables described by {↑ j} and {↓ j}, where for j = 1, 2, . . . , η
we have independent and identically distributed trials. This allows us to take
advantage of a Chernoff bound.

Pr

∑
j

1j < ηθi(1− ε)

 < exp

[
−ηθiε2

2

]

Pr
(
θ̂i < θi(1− ε)

)
< exp

[
−ηθiε2

2

]
Similarly,

Pr

∑
j

1↑j < ηθ↑i(1− ε)

 < exp

[
−ηθ↑iε2

2

]

Pr
(
θ̂↑i < θ↑i(1− ε)

)
< exp

[
−ηθ↑iε2

2

]

12

and further

Pr

∑
j

1↓j < ηθ↓i(1− ε)

 < exp

[
−ηθ↓iε2

2

]

Pr
(
θ̂↓i < θ↓i(1− ε)

)
< exp

[
−ηθ↓iε2

2

]
Notice that we have exponential convergence for each of our random vari-

ables, provided the true parameters are not vanishingly small. By definition,
θ̂i + θ̂↑i + θ̂↓i = 1. Therefore, at most two parameters are vanishingly small.
Consider three cases.

Case 1: All of θi, θ↑i, and θ↓i are not vanishingly small. We have exponential
convergence for all estimators.

Case 2: One of three parameters is vanishingly small. Without loss of
generality, let θi ≈ 0. We then have θ̂↑i → θ↑i and θ̂↓i → θ↓i. Then θ̂i =

1− θ̂↑i − θ̂↓i → 1− θ↑i − θ↓i = θi. Again, we have exponential convergence for
all estimators.

Case 3: Two of three parameters are vanishingly small. Without loss of
generality, let these be θ↑i and θi. So, θ↓i ≈ 1. Since θ̂↓i converges exponentially

fast, we have θ̂↓i ≈ 1. Since θ̂↑i + θ̂i = 1 − θ̂↓i ≈ 0, we know that θ̂↑i ≈ 0 and

that θ̂i ≈ 0. Since these values are non-negative, we can say with certainty that
θ↓i is greater than either of the other two parameters.

In all cases, we are able to determine the appropriate action to take in our
binary search. Since we have exponential convergence in each case, we only need
O(log(η)) iterations before moving onto the next step of binary search.

Choosing x Note in our proof we put an upper bound on x, however, this is
not problematic for two reasons. An upper bound on x implies a lower bound
on p. Since low p correlates to a higher number of connected components on
the resulting sub-graph, it does not interfere with our binary search so long as
E[CCp] > 1. Given our bound for x, we know that the probability the min-cut
is disconnected is 1

ε , therefore it’s impossible for E[CCp] = 1.

13

5.2 Algorithm

Algorithm 4: Distributed Min Cut

1 Binary Search for optimal p
2 In Parallel:
3 Sample each edge with probability p
4 Compute connected components on sub-graph
5 if Number connected components ∈ [2, O(log(m))] then
6 Return connected components
7 end
8 else
9 Discard

10 end

11 end
12 Count number of times each cut is disconnected
13 Maximally occurring cut is highly likely to be a 1 + ε approximation of

min cut

5.3 Run Time and Shuffle Size Analysis

The run time varies drastically depending on the methodology used to sample
connected components. The binary search requires sampling O(log(n)) sub-
graphs. Let CC denote the time it takes to run connected components analysis.
We then have to run O(CC log(n)) connected components analyses to deter-
mine optimal p. Once we have p, we must sample another log(n)/ε2 sub-graphs,
and perform yet another O(CC log(n)/ε2) connected components analysis. Enu-
merating the number of disconnected cuts takes O(m) with a carefully chosen
p. Thus, finding the most often disconnected cut from these lists is upper

bounded by O(CC log(n)
Bε2), since the process is embarrassingly parallel provided

B < log(n)/ε2, since the sampling processes are independent of each other.

5.3.1 Standard Approach

If G′ fits on one machine, we may perform connected components locally in
O(m) time. Since each sub-graph will have O(mp) edges, the total run time

is O(mp log(n)ε2). Since edges of G′ must be grouped together for each G′, the

shuffle cost is given by O(mp log(n)ε2).

5.3.2 When Sub-Graph is Large

If G′ is too large to fit on a single machine, we may use our distributed MST
algorithm to find connected components. In the low-run time MST described

above, the cost for finding an MST is O(m log(n)
B + B log(n)) with shuffle size

O(n log(n)+Bn). The cost of the whole analysis is O(log(n)
ε2 (m log(n)

B +B log(n)))

14

The shuffle for each iteration costs O(n log(n) + Bn) so total shuffle for the

algorithm is O(log(n)
ε2 (n log(n) +Bn)).

5.3.3 High Machines

In Karger’s paper [4], “Fast Connected Components Algorithms for the EREW
PRAM”, he develops a fast connected components analysis which runs inO(log(n) log(log(n)))
time, but which requires (m+n)/ log(n) EREW processors (exclusive read, ex-
clusive write). We recognize that this may not be feasible for larger graphs,
however, if those resources are available, we perform a binary search for p
such that E[# connected components] = log(log2(n)). Therefore enumeration
of all disconnected cuts only takes O(log2(n)). Thus, the whole analysis is

O(log2(n) log(log(n))
ε2), as the bottleneck is sampling and computing sub-graphs.

5.4 An Exact Algorithm

It’s worth noting that by setting ε ≤ 1
c , where c denotes the size of the min-cut,

the approximation algorithm becomes exact. This is because the approximation
becomes c(1 + ε) ≤ c(1 + 1

c) = c+ 1.

6 Comparing to Other Approaches

The two comparable papers are written by Lattanzi et.al [9] and Danupon
Nanongkai and Hsin-Hao Su [6]. In the Lattanzi paper, the number of machines
they used ends up being O(n). If we use that many machines our approach
becomes faster. Our approach also has the advantage of having lower shuffle
cost.

The more interesting comparison is to Nanongkai’s paper. Generalizing our
model to the CONGEST model where running connected components costs
O(d +

√
n log∗(n)), we can adjust our binary search algorithm to find p such

that E[number connected components] = log(
√
n) and run our algorithm for

log(n)
ε2 iterations. This leads to a O((D +

√
n log∗(n)) log(n)

ε2) run time, in which

case our algorithm is faster by a factor of O(log2(n)
ε3).

7 Conclusion

In conclusion, with high number of machines, our algorithm becomes exceedingly
fast. Even in the absence of high machines, our process works regardless of the
size of the sub-graphs, thus forming a new approach to approximating min cut.
It’s worth noting, that although we’ve dealt with graphs in an un-weighted
context, we should be able to handle weights by sampling not with constant p
but with pi inversely proportional to each edges weight.

15

8 Areas Future Research

If we find an efficient methodology from going from a list of connected compo-
nents to the most often disconnected cut without requiring full enumeration,
it is possible to remove the binary search from this process, which frees up
more flexibility on p, which allows us to sample graphs such that they are small
enough to fit locally on a single machine.

Moreover, another interesting avenue of research is to sample edges with
respect to effective resistances. Thus far, we know that sampling with respect
to effective resistances makes the min-cut comparatively more likely to be dis-
connected, which should reduce the number of iterations required. However,
determining a tight-bound will be left for future research.

Finally, the same approach generalizes to ST Min-Cut, if we can find a way
to guarantee that S and T are separated a constant proportion of the time when
sampling sub-graphs. The general approach to this methodology would be to
perform a binary search for p such that S and T are separated 1/2 the time,
and then only consider sub-graphs when they are disconnected.

16

References

[1] Prim, R. C. Shortest Connection Networks and some generalizations 1957 3

[2] David R. Karger, Global Min-cuts in RNC and other Ramifications of a
Simple Mincut algorithm, SODA, Philadelphia, 1993. 2, 4, 4

[3] David R. Karger, Clifford Stein, A new approach to the minimum cut prob-
lem, 1996. 2

[4] David R. Karger, Noam Nisan, Michal Parnas Fast Connected Components
Algorithms for the EREW PRAM 1997. 5.3.3

[5] David R. Karger Minimum Cuts in Near-Linear Time 1998 2

[6] Danupon Nanongkai, Hsin-Hao Su Almost-Tight Distributed Minimum Cut
Algorithms 2014. 1, 2, 6

[7] David R. Karger Random Sampling in Cut, Flow, and Network Design Prob-
lems 2000. 2

[8] Fan Chung, Paul Horn, Linyuan Lu The giant in a random subgraph of a
given graph 2009

[9] Lattanzi, Mosely, Suri, Vassilvitskii Filtering: A Method for Solving Graph
Problems in MapReduce 2011. 2, 6

17

	Overview
	Literature Review
	Distributing Karger through MST
	Algorithm
	Distributed MST Approach - Low Shuffle Size
	Distributed MST Approach - Low Number Map Reduces

	Algorithm Analysis

	Distributed Min Cut Approximation Algorithm
	Distributed Min Cut Approximation Algorithm
	Binary Search
	Algorithm
	Run Time and Shuffle Size Analysis
	Standard Approach
	When Sub-Graph is Large
	High Machines

	An Exact Algorithm

	Comparing to Other Approaches
	Conclusion
	Areas Future Research

