CME 323: Distributed Algorithms and Optimization, Spring 2016
http://stanford.edu/~rezab/dao.
Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 5, 4/17/2017. Scribed by Andreas Santucci.

Lecture contents

1. QuickSort
2. Parallel algorithm for minimum spanning trees (Boruvka)

3. Parallel connected components (random mates)

1 QuickSort

First, we’ll finish the analysis of QuickSort. The algorithm is as follows.

Algorithm 1: QuickSort

Input: An array A

Output: Sorted A
1 p < element of A chosen uniformly at random
2 L« [ala € As.t. a<p] // Implicitly: By < 1{a; <p}!,, prefixSum(B;),
3 R« [ala € As.t. a>p] // which requires O(n) work and O(logn) depth.
4 return [QuickSort(L), p, QuickSort(R)]

1.1 Analysis on Memory Management

Recall that in Lecture 4, we designed an algorithm to construct L and R in O(n) work and O(logn)
depth. Since we know the algorithm used to construct L and R (which is the main work required
of QuickSort), let us take this opportunity to take a closer look at memory management during
the algorithm.

Selecting a pivot uniformly at random We denote the size our input array A by n. To be
precise, we can perform step 1 in O(logn) work and O(1) depth. That is, to generate a number
uniformly from the set {1,2,...,n} we can assign logn processors to independently flip a bit “on”
with probability 1/2. The resulting bit-sequence can be interpreted as a log, representation of a
number from {1,...,n}.

http://stanford.edu/~rezab/dao

Allocating storage for L. and R Start by making a call to the OS to allocate an array of n
elements; this requires O(1) work and depth, since we do not require the elements to be initialized.
We compare each element in the array with the pivot, p, and write a 1 to the corresponding element
if the element belongs in L (i.e. it’s smaller) and a 0 otherwise. This requires ©(n) work but can
be done in parallel, i.e. O(1) depth. We are left with an array of 1’s and 0’s indicating whether an
element belongs in L or not, call it 1,

1 =1{a € As.t. a <p}.

We then apply PrefixSum on the indicator array 17, which requires O(n) work and O(logn)
depth. Then, we may examine the value of the last element in the output array from prefixSum
to learn the size of L. Looking up the last element in array 1 requires O(1) work and depth. We
can further allocate a new array for L in constant time and depth. Since we know |L| and we know
n, we also know |R| = n — |L|; computing |R| and allocating corresponding storage requires O(1)
work and depth.

Thus, allocating space for L and R requires O(n) work and O(logn) depth.

Filling L and R Now, we use n processors, assigning each to exactly one element in our input
array A, and in parallel we perform the following steps. Each processor 1,2, ..., n is assigned to its
corresponding entry in A. Suppose we fix attention to the kth processor, which is responsible for
assigning the kth entry in A to its appropriate location in either L or R. We first examine 1, [k]
to determine whether the element belongs in L or R. In addition, examine the corresponding entry
in prefixSum output, denote this value by i = prefixSum(1z)[k]. If the kth entry of A belongs
in L, then it may be written to the position ¢ in L immediately, by definition of how what our
prefixSum output on 1j means. If the kth entry instead belongs in R, then realize that index @
tells us that exactly i entries “before” element k belong in L. Hence exactly k — ¢ elements belong
in array R before element A[k]. Hence we know exactly where to write the kth element to R if it
belongs there.
Clearly, the process of filling L and R requires O(n) work and O(1) depth.

Work and Depth per Iteration Thus we may say that steps 1,2,3 of our algorithm require
O(n) work and O(log n) depthm The last step of the algorithm requires recursive calls to Quicksort
and a concatenation of several elements. Realize that if we are clever about how we allocate the
memory for our arrays to begin with, this “concatenation” (or lack thereof) can be performed
without extra work or depth[]

Tt may be tempting to think that we can get away with not calculating a prefixSum on 1y, in order to determine
the sizes of L and R, and instead pass this indicator array 11, to our recursive call. We might think that we can then
avoid incurring log n depth. However, realize that then when we pass 11 to our recursive call, it would still be of size
n, hence we would not be decreasing the size of our problem with each recursive call. This would result in quite a
poor algorithm.

2For details, see lecture 4 notes, specifically the section on “Parallel Algorithms and (Seemingly) Trivial Opera-
tions”.

1.2 Total Expected Work

Now we analyze the total expected work of QuickSortH We assume all our input elements are
uniqueﬁ On a very high level, to compute the work, note that the work done summed across each
level of our computational DAG is n. There are log,/3n levels in our DAG, hence expected work
given by

E[T1] = E[# levels] - E[work per level] = O(nlogn)

Details We define the random indicator variable X;; to be one if the algorithm does compare the
ith smallest and the jth smallest elements of input array A during the course of its sorting routine,
and zero otherwise. Let X denote the total number of comparisons made by our algorithm. Then,

n—1 n
X=> > X

i=1 j=i+1

we have that

Number of Comparisons We take a moment to realize why we sum over (g) elements instead
of n?: the only time in our QuickSort algorithm whereby we make a comparison of two elements
is when we construct L and R. In doing so, we compare each element in the array to a fixed pivot
of p, after which all elements in L less than p and all elements in R greater than p. Realize that
pivot p is never compared to elements in L and R for the remainder of the algorithm. Hence each
of the (g) pairings are considered at most once by our QuickSort algorithm.

Expected Number of Comparisons Realize that expectation operator E is monotone, hence
n—1 n n—1 n
EX]<E|> > Xy|=> > E[Xyl
i=1 j=i+1 i=1 j=i+1

where the equality follows from linearity of expectation. Since X;; an indicator random variable,

E[X”] =0- PI‘(XZ']‘ = 0) +1- PI‘(XZ‘J' = 1) = PI‘(XZ‘J').

Consider any particular X;; for i < j (i.e. one of interest). Denote the ith smallest element of
input array A by rankgl(i) for i = 1,2,...,n. For any one call to QuickSort, there are exactly
three cases to consider, depending on how the value of the pivot compares with A[i] and A[j].

e Case 1: p € {rankzl(i),rankzl(j)} In selecting a number from {1,2,...,n} uniformly
at random, we happen to select an element as pivot from A which is either the ith smallest
element in A or the jth smallest element in A. In this case, X;; = 1 by definition.

3We follow the analysis from CMU very closely.[2]

41f there are duplicate elements in our input A, then this only cuts down the amount of work required. As the
algorithm is written, we look for strict inequality when constructing L and R. If we ever select one of the duplicated
elements as a pivot, its duplicates values are not included in recursive calls hence the size of our sub-problems

decreases even more than if all elements were unique.

https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0123.pdf

e Case 2: rankz1) <p< rankzl(7): The value of the pivot element selected lies between
the ¢th smallest element and the jth smallest element. Since ¢ < j, element i placed in L
and j placed in R and X;; = 0, since the elements will never be compared.

e Case 3: p< rankzl(z’) orp> rankz1 (7): The value of the pivot is either less than the
1th smallest element in A or greater than the jth smallest, in which case either both elements
placed into R or both placed into L respectively. Hence X;; may still be “flipped on” in

another recursive call to Quicksort.

It’s possible that on any given round of our algorithm, we end up falling into case 3. Ignore
this for now. In doing so, we implicitly condition on falling into case 1 or 2, i.e. we condition on
our rank p being chosen so that it lies in the set of values {rank ;" (i), rank ;' (i +1),...,rank ;" (§)}.
Then, the probability that X;; = 1 (ignoring case 3) is exactly

Thus,
n—1 n n—1 n 9 n—1 n 1
EX] =) > EXyl=) > =222
et b~ g —7 41 — 7 —14+1
i=1 j=i+1 i=1 j=i+ i=1 j=i+1
5y L1 1
_i:1 2 3 Con—i+1

Now, note that H, = > ", % is the Harmonic Number. We note that ;" , % < fln %dx, from
Calculus and further that fln %dx = Inn. Hence we see that

n—1 n—itl 1
E[X] = 22 Z 7 < 2nH, = O(nlogn).
=1 j=2

So, in expectation, the number of comparisons (i.e. the work performed by our algorithm) is
O(nlogn).

1.3 Total Expected Depth

Recall our analysis in Lecture 4 for QuickSelect. In a similar fashion, we may consider the number
of recursive calls made to our algorithm when our input array is of size

3 k+1 3 k

and denote this quantity by X. We saw that if we select a pivot in the right way, we can reduce
input size by 3/4.

We saw that E[Xj] = 2, since it’s a geometric random variable (i.e., we continually make calls
to QuickSort until we successfully reduce our input size by at least 3/4. In expectation, this takes

https://en.wikipedia.org/wiki/Harmonic_number

—

N

W[O
—

If we select any of these elements in red as a pivot,
where we visualize the elements being in sorted or-
der, then both L and R will have size < %n.

Figure 1: Ideal Pivot Selection

QuickSort (A)

QuickSort (L) QuickSort (R)

O(logn) levels

Figure 2: Computational DAG for QuickSort

two trials. Hence in expectation we require 2clog, 3 n recursive calls to be made before we reach a
base case.

Here, we see that in our computational DAG, we have O(logy/3 1) levels. At each level, our
algorithm requires O(logn) depth since the bottleneck is in constructing L and R and specifically
in the call to Prefix Sum. Hence in expectation our total depth given by the expected number of
levels times the expected depth per level: E[D(n)] = O(log?n).

1.4 A Shortcut for Bounding Total Expected Work

Examine figure the computational DAG for our QuickSort algorithm. We are initially handed
an input array of size n elements. At each level of our DAG, the n elements are split into chunks
across nodes in that level. Specifically, we’re not sure exactly how many elements from A are
allocated to L, nor do we know exactly how many elements from A are allocated to R. But we
definitely know that there are always n elements we deal with on each level. The most work-
intensive operation we perform in each call to QuickSort is in constructing L and R, which requires
©(n) work. Hence, for a given level in our computational DAG, we perform exactly O(n) work
total after summing across work in all nodes.
So, in this very specialized analysis, we have that expected work is

5This can easily be seen by comparing a Lower Darboux Sum with a Riemann Integral.

E[W] = (# nodes per level) x (# levels) = O(nlogn).

Since there are O(logn) levels in our tree in expectation, we perform O(nlogn) work in expec-
tation.

2 Matrix multiplication: Strassen’s algorithm

We've all learned the naive way to perform matrix multiplies in O(n?) timeﬁ In today’s lecture, we
review Strassen’s sequential algorithm for matrix multiplication which requires O(n'827) = O(n?81)
operations; the algorithm is amenable to parallelization.[5]

A variant of Strassen’s sequential algorithm was developed by Coppersmith and Winograd, they
achieved a run time of O(n?37).[4] The current best algorithm for matrix multiplication O(n?37)

was developed by Stanford’s own Virginia Williams|[6].

2.1 Idea - Block Matrix Multiplication

The idea behind Strassen’s algorithm is in the formulation of matrix multiplication as a recursive
problem. We first cover a variant of the naive algorithm, formulated in terms of block matrices,
and then parallelize it. Assume A, B € R™*"™ and C' = AB, where n is a power of two[]

We write A and B as block matrices,

A [A A . B- B Bz o= Cni Ciz ,
A9 Agp By Bap Ca1 Cx
where block matrices A;; are of size n/2 x n/2 (same with respect to block entries of B and C).

Trivially, we may apply the definition of block-matrix multiplication to write down a formula for
the block-entries of C, i.e.

Cn = A B + A12B2
Ci2 = A11B12 + A12Ba
Co1 = A21B11 + A22Boy
Cag = A21B1a + A2 B

2.2 Parallelizing the Algorithm

Realize that A;; and By, are smaller matrices, hence we have broken down our initial problem of
multiplying two n X n matrices into a problem requiring 8 matrix multiplies between matrices of

SRefresher, to compute C' = AB, we need to compute cij, of which there are n? entries. Each one may be computed
via ¢;; = {al,b;) in 2n — 1 = O(n) operations. Hence total work is O(n?).

"If n is not a power of two, then from a theoretical perspective we may simply pad the matrix with additional
zeros. From a practical perspective, we would simply use un-equal size blocks.

size n/2 x n/2, as well as a total of 4 matrix additions. There is nothing fundamentally different
between the matrix multiplies that we need to compute at this level relative to our original problem.

Further, realize that the four block entries of C' may be computed independently from one
another, hence we may come up with the following recurrence for work:

W(n) = 8W(n/2) + O(n?)

By the Master Theorem W(n) = O(n'#28) = O(n3). So we have not made any progress
(other than making our algorithm parallel). We already saw in lecture two that we can naively
parallelize matrix-multiplies very simply to yield O(n?) work and O(logn) depth.

2.3 Strassen’s Algorithm

We now turn toward Strassen’s algorithm, such that we will be able to reduce the number of sub-
calls to matrix-multiplies to 7, using just a bit of algebra. In this way, we bring the work down to
O(nlog2 7) .

How do we do this? We use the following factoring scheme. We write down Cj;’s in terms of
block matrices M}’s. Each M} may be calculated simply from products and sums of sub-blocks of
A and B. That is, we let

My = (A11 + Az2) (B11 + Ba2)
My = (Az1 + A22) By
M3 = A11(Bi2 — Ba2)
My = Az (Ba21 — Bi1)
Ms = (A11 + A12)Bao
Mg = (A1 — A11)(B11 + Bi2)
M7 = (A12 — A22)(B21 + Bas)
Crucially, each of the above factors can be evaluated using exactly one matrix multiplication.
And yet, since each of the M}’s expands by the distributive property of matrix multiplication,
they capture additional information. Also important, is that these matrices M} may be computed

independently of one another, i.e. this is where the parallelization of our algorithm occurs.
It can be verified that

Ci1 = My + My — Ms + M7
Ci2 = M3 + M;
Co1 = M + My
Coo = My — M + M3 + Mg

8Case 1: f(n) = O(n?), so c = 2 < 3 = log,(8).

Realize that our algorithm requires quite a few summations, however, this number is a constant
independent of the size of our matrix multiples. Hence, the work is given by a recurrence of the
form

W(n) = TW(n/2) + O(n?) = W(n) = O(n'*%27).

What about the depth of this algorithm? Since all of our recursive matrix-multiplies may be
computed in parallel, and since we can add matrices together in unit depthﬂ we see that depth is
given by

D(n) =D(n/2) 4+ 0O(1) = D(n) =0O(logn)

2.81

By Brent’s theorem, T, < ”p + O(logn). In the years since Strassen published his paper,

people have been playing this game to bring down the work required marginally, but nobody has

come up with a fundamentally different approach.

2.4 Drawbacks of Divide and Conquer

We now discuss some bottleneck’s of Strassen’s algorithm (and Divide and Conquer algorithms in
general).

e We haven’t considered communication bottlenecks; in real life communication is expensive.
e Disk/RAM differences are a bottleneck for recursive algorithms, and

e PRAM assumes perfect scheduling.

Communication Cost Our PRAM model assumes zero communication costs between proces-
sors. The reason is because the PRAM model assumes a shared memory model, in which each
processor has fast access to a single memory bank. Realistically, we never have efficient communi-
cation, since often times in the real world we have clusters of computers, each with its own private
bank of memory. In these cases, divide and conquer is often impractical.

It is true that when our data are split across multiple machines, having an algorithm operate
on blocks of data at a time can be useful. However, as Strassen’s algorithm continues to chop up
matrices into smaller and smaller chunks, this places a large communication burden on distributed
set ups because after the first iteration, it is likely that we will incur a shuffle cost as we are forced
to send data between machines.

9We note that to perform matrix addition of two n x n matrices X +Y = W, we may calculate each of the n?
entries W;; = X;; +Y;; in parallel using n? processors. Each entry requires only one fundamental unit of computation,
hence the work for matrix addition is O(n?) and the depth is O(1).

Caveat - Big O and Big Constants One last caveat specific to Strassen’s Algorithm is that
in practice, the O(n?) term requires 20 - n? operations, which is quite a large constant to hide. If
our data is large enough that it must be distributed across machines in order to store it all, then
really we can often only afford to pass through the entire data set one time. If each matrix-multiply
requires twenty passes through the data, we’re in big trouble. Big O notation is great to get you
started, and tells us to throw away egregiously inefficient algorithms. But once we get down to
comparing two reasonable algorithms, we often have to look at the algorithms more closely.

When is Strassen’s worth it? If we’re actually in the PRAM model, i.e. we have a shared
memory cluster, then Strassen’s algorithm tends to be advantageous only if n > 1,000, assuming no
communication costs. Higher communication costs drive up the n at which Strassen’s becomes useful
very quickly. Even at n = 1,000, naive matrix-multiply requires 1e9 operations; we can’t really do
much more than this with a single processor. Strassen’s is mainly interesting as a theoretical idea.
For more on Strassen in distributed models, see [3].

Disk Vs. RAM Trade-off What is the reason that we can only pass through our data once?
There is a big trade-off between having data in ram and having it on disk. If we have tons of data,
our data is stored on disk. We also have an additional constraint that with respect to streaming
data, as the data are coming in they are being stored in memory, i.e. we have fast random access,
but once we store the data to disk retrieving it again is expensive.

3 Minimum spanning tree algorithms

Now we’ll shift our focus to parallel graph algorithms, beginning with minimum spanning trees.
In the following sections, we’ll denote our connected and undirected graph by G = (V, E,w). The
size of the vertex set |V| = n, the size of the edge set |E| = m, and we assume that the weights
w: E — R are distinct for convenience[l]

A tree is an undirected graph G which satisfies any two of the three following statements, such
a graph also then satisfies the other property as WGHE

1. G connected
2. G has no cycles

3. G has exactly n — 1 edges

107f the edge weights are not distinct, then we may simply perturb each edge weight by a small random factor
€ > 0, where € < 1/n. We no longer have to break ties in our algorithm and at the end, we may simply round back
the edge weights to recover the weight of the minimum spanning tree.

"To see that (1,2) == 3, use induction on the number of nodes n. The base case is trivial. For the inductive
step, realize that any acyclic connected graph G must have a leaf v where d(v) = 1. Since G — v also acyclic and
connected, by the induction hypothesis, e(G’) = n — 2. Since d(v) = 1, we have that e(G) = n — 1. To see that
(1,3) = 2, suppose toward contradiction G has a cycle. To see that (2,3) = 1, consider the case that G split
into k components. Since G has no cycles, each component G; both connected and acyclic, hence each is a tree. So
total number of edges in G given by >, (n(G:) —1) =n —k. But since |[E|=n—1, k= 1.

The minimum spanning tree (MST) of Gis T* = (V, Er,w) such that 3 .5 w(e) < > cp,. w(e)
for any other spanning tree T'. Under the assumptions on GG, the MST T™ is unique and the previous
inequality is strict.

3.1 Sequential approaches and Kruskal’s algorithm

Sequential algorithms for finding the MST are nice and easy because greedy algorithms work well
for this problem. The two clear approaches are Prim’s algorithm and Kruskal’s algorithm. Here,
we’ll focus on Kruskal’s algorithm, given in Algorithm

Algorithm 2: Kruskal’s MST algorithm

Input: G = (V, E,w), an undirected and connected graph
Result: 7%, the MST of G

Sort F in increasing order by edge weight T' < ()

while T' not yet a spanning tree do
e < next edge in the queue // i.e. 1lightest edge yet to be considered
if (T'U{e}) contains no cycles then
‘ T+ TU{e} // By red rule, e belongs in T™.
end

end

R N O ok W N =

return 7'

Kruskal’s algorithm is based on the cut property (or red rule), which we now prove.

Theorem 3.1 (Cut-Property, Red-Rule) Let G(V, E,w) be an undirected and connected graph.
Then the edge with minimum weight leaving any cut S C V is in the MST of G.

Proof: We are given a graph G and a cut S C V. We say that an edge is in a cut S if exactly
one incident node is in S and the other incident node of the edge in V'\ S. Let e* = (u,v) be the
minimum weight edge in cut S. Assume toward contradiction that the edge with minimum weight
leaving cut S is not in the MST T, i.e. that ¢* ¢ T where T is the MST of G and

e* = argminw(e).
eeS
Suppose e* = (u,v). Since T is a spanning tree of G, we know that u and v are connected in the
edge set of T, i.e. there exists a u-v path in T. Of course, we have assumed that (u,v) € T. We
construct a u-v path using depth first search. Let (x,y) = ¢’ denote the edge in T which crosses
cut S in the u-v path. Replace (z,y) with (u,v). Call the result 7".

We claim that 77 = (T'\ (z,y)) U (u,v) is still a tree. We first claim 7" retains connectivity
among all nodes. To see this, realize first that since (z,y) and (u, v) each have exactly one incident
node in S and one incident node in V' \ S, then it is not possible that either (x,y) or (u,v), when
removed from T, could result in S becoming disconnected or V'\ S becoming disconnected. Hence,

10

without either of these edges, we can get from all nodes in S to all other nodes in .S, and same goes
for the set V' \ S. It remains to show that we can still traverse from S to V' \ S. Realize that all
paths previously going from S to V' \ S using (z,y) can now simply utilize (u,v) instead.

Further, realize that we have not created any cycles. Specifically, when we add edge (u,v) to the
tree T, we induce a cycle. But realize that the edge (z,y) is part of this cycle, and we immediately
remove it. Hence in maintaining connectivity and keeping exactly n — 1 edges, by definition of a
tree we know that the result is acyclic.

Since e* is the minimum weight edge in S, and since it is not contained in 7T, we know that
w(e*) < w(e’). But then this implies that

w(T') =) wle) = wle) — [w(e') —w(e)] < Y wle) = w(T)

eeT’ ecT <0

But this is a contradiction, since T was defined as the MST of G. Thus, e* is in the MST of G. &

3.2 Complexity Analysis for Kruskal’s

A brief complexity analysis of Kruskal’s algorithm is as followsE] Recall work is defined as T} =

Sorting Edges Our QuickSort algorithm requires E[WW (n)] = O(mlogm) = O(mlogn).

Checking for Cycles Specifically because we are considering adding a single edge to a tree,
we can check if we are inducing a cycle in almost constant time; specifically the work required is
a(m,n), where a denotes the Inverse Ackermann function. [1]

We show now quickly a way to check for cycles in O(logn) work that is a bit more accessible.
We must ensure that if edge e = (u,v) to be added, that the component of u is not the same
component as v. To do this, we keep several data structures around: an array and a Binary Search
Tree. We assume that with each component of our graph, we associate with it a binary search tree
storing values of nodes in our graph G which are in a particular component k. In addition, we keep
an array of length n where in each entry, it tells us which component node ¢ currently in.

Hence, given a candidate (u,v), we go to our length n array and look up in constant time a[v]
which tells us that node v in component j. We then go to our BST corresponding to component j,

and search in O(logn) time to check if node w in the same component.

Updating Data Structures if we Add an Edge If we find they share the same component
already, we discard the edge and continue. Otherwise, the edge turns out to connect two compo-
nents, hence we must update our data structures. We go to array A of length n, and write down
that u now belongs to v’s componentr_gl This last step requires O(1) work.

1214’s worthwhile to note that since (’;

by O(logn), using the fact that logm = O(logn?®) = O(2logn) = O(logn). We leave O(logm) terms in place here
for pedagogical purposes.
13We resolve the conflict of which node to join to which component by (arbitrarily) choose node index v as the

) <m = m = 0(n?), hence any O(logm) term may actually be replaced

parent since it is larger than node index wu.

11

https://en.wikipedia.org/wiki/Ackermann_function#Inverse

Now, we must merge the component of u with the component of v. Two merge two binary
search trees, we first flatten each BST into a sorted linked list with O(n) work using in order
traversal. We then merge two sorted lists in O(n) work to get a sorted array. We then need to
form a BST with our sorted array. To do this, we fix attention to the element in the middle of
our array. Realize that all preceding elements in the list are no larger than itself, and all elements
following are no smaller. We may make the same observation for the left and right partitions, each
time storing pointers from the median element of the list to the left and right children medians.
In this way, we re-construct our BST with O(n) work, since we only end up applying a constant
amount of work to each element in our sorted array.

Total Work Sorting edges costs O(mlogn) work. Our while loop iterates over at most m edges.
Checking for cycles each iteration costs O(logn) work. Hence we have incurred O(mlogn) work
thus far without even considering how much it costs to update our data structures when we add
an edge to our tree.

Realize that we only need to add m — 1 edges before we construct a tree. Further, each
edge we add requires O(n) work. Hence the entire tree construction process takes O(n?) work.
Since O(n?) = O(m), the work required to sort our edges dominates, and total work required is
O(mlogn).

References

[1] A minimum spanning tree algorithm with inverse-ackermann type complexity, NECI Research

Tech Report, (1999).
[2] Probabilistic analysis and randomized quicksort, Carnegie Mellon, 15451-s07, (2007).

[3] G. BALLARD, J. DEMMEL, O. HoLrz, B. LipsHITZ, AND O. SCHWARTZ, Communication-
optimal parallel algorithm for strassen’s matriz multiplication, CoRR, abs/1202.3173 (2012).

[4] D. COPPERSMITH AND S. WINOGRAD, Matriz multiplication via arithmetic progressions, J.
Symbolic Computation, 9 (1990), pp. 251-280.

[5] V. STRASSEN, Gaussian elimination is not optimal, Numerische Mathematik, 13, pp. 354-356.

[6] V. V. WILLIAMS, Multiplying matrices in o(n®3™) time, Stanford University, (2014).

12

	1 QuickSort
	1.1 Analysis on Memory Management
	1.2 Total Expected Work
	1.3 Total Expected Depth
	1.4 A Shortcut for Bounding Total Expected Work

	2 Matrix multiplication: Strassen's algorithm
	2.1 Idea - Block Matrix Multiplication
	2.2 Parallelizing the Algorithm
	2.3 Strassen's Algorithm
	2.4 Drawbacks of Divide and Conquer

	3 Minimum spanning tree algorithms
	3.1 Sequential approaches and Kruskal's algorithm
	3.2 Complexity Analysis for Kruskal's

