
R Programming Workshop

Institute for Computational and Mathematical Engineering

Stanford University

Andreas Santucci

https://icme.stanford.edu/

Contents

1 Background Reading 3
1.1 Introduction . 3

1.1.1 History . 3
1.1.2 Why R? . 3

1.2 Setting Up R . 3
1.2.1 R Studio . 3
1.2.2 Emacs Speaks Statistics . 4
1.2.3 10k Foot Overview . 4

1.3 Help and Documentation . 5
1.3.1 Course Outline . 5

2 Additional Set-Up 6

3 Data Visualization 7
3.1 Univariate distributions . 7
3.2 Bivariate distributions . 8

3.2.1 Adding Additional Dimensions to your Plots . 8
3.3 Visualizing Smoothed Relationships with Modeling Techniques . 10
3.4 Statistical Transformations when Plotting . 11

4 Revisiting a Couple of Basics in R 12
4.1 As (an extensible) Calculator . 12

4.1.1 Variables . 12
4.1.2 Scalars and Vectors . 13
4.1.3 (Using) Functions . 13

4.2 Built-in Statistical Functions . 13
4.3 Assignment Operators . 15
4.4 Scripts . 15

5 Data Frames 16
5.1 Using read.csv to read in spreadsheet data . 16
5.2 Indexing into Data.Frames . 16
5.3 Techniques for Data Inspection . 17
5.4 Re-order rows of a data.frame via dplyr::arrange() . 18
5.5 Data Transformations . 18

5.5.1 Filtering rows using filter() . 18
5.6 Adding New Variables to a data.frame . 19

5.6.1 dplyr::mutate() . 20
5.7 Tabulating two categorical fields . 21
5.8 Imputation . 21
5.9 Other Ways of Getting data.frames Into R . 22

5.9.1 Remote Files . 22
5.9.2 Copy Paste . 22

6 Aggregating and Reshaping Data 23
6.1 Aggregation of Data . 23

6.1.1 Summarizing Multiple Columns . 23
6.2 Reshaping Data . 23

1

7 Putting It All Together 24
7.1 Data Collection, Ingestion . 24
7.2 Data Visualization . 25
7.3 A First Model . 26
7.4 Checking Linear Model Assumptions . 26
7.5 Iterative Model Refinement . 27
7.6 Applied Example: Handling Outliers . 28

7.6.1 Replacing Outliers with Missing Values . 29

8 What Next? 29

9 Appendix 30
9.1 Essential Data Structures . 30

9.1.1 Vector (Operations) . 30
9.1.2 Matrices . 32
9.1.3 Lists . 33

9.2 Control Flow . 34
9.2.1 Functions . 34

9.3 For-Loops and Apply Functionals . 37
9.3.1 Control Flow with Data.Frames . 37
9.3.2 Apply Functionals . 39
9.3.3 Loading Multiple Files at a Time . 40
9.3.4 Aggregation of Data . 41

9.4 Linear Modeling . 43
9.4.1 Regression . 43
9.4.2 Binary Classification . 47
9.4.3 Quantiles and Discretizing Data . 49

10 Practice Exercises 51
10.1 Built-in Constants . 51
10.2 First Principles Statistics . 51
10.3 Creating New Variables in data.frames . 51
10.4 Boolean Arithmetic . 52
10.5 Operations on Filtered data.frames . 52
10.6 Plotting . 52
10.7 Working with Strings and Dates . 53
10.8 Case Study . 54

11 Base-R Exercises 55

2

1 Background Reading

1.1 Introduction

1.1.1 History

R is a powerful open-source tool for statistical computing. It’s earliest origins date back to Bell Labs
in the 70’s via S (programming language). The motivation was for ‘S’ was to move away from calling
Fortran routines and offer an interactive environment for statistical analysis. In the early 90’s a “different
implementation” of S by Ross I. and Robert G. started gaining traction.

1.1.2 Why R?

• R is excellent for statistical analyses.

Methods are built in for (non)-linear regression modeling, time-series analysis, classification, cluster-
ing, and plotting. For these, we don’t even need to import a package.

• R is interactive, and enables us to explore data and refine models iteratively.

R is an interpreted language, i.e. we don’t need to compile our programs into machine instructions
before executing our code. We can simply enter code into the console and the result appears!

• R is flexible, allowing procedural, object-oriented, or even functional programming approaches.

The practical implication is that we can run models and perform matrix arithmetic at a high level
of abstraction, allowing us to think about the actual problem at hand.

• The active R development community makes the program extensible.

Aside from the core R development team, we have Dirk Eddelbuettel on Rcpp and performance
computing in R, Hadley Wickham who focuses on redesigning R code to be more user friendly via
the tidyverse, and Matt Dowle leading the data.table development, just to name a few.

I have been greeted by many individuals who are surprised at what I have accomplished by programming
in R. Unsurprisingly, those who are most aghast are typically lesser practiced in this language.

1.2 Setting Up R

We start by downloading and installing the latest version of R on our machine (detailed instructions).1

With this, we can start programming in R, albeit not in a friendly environment.

1.2.1 R Studio

I recommend starting with a popular interface for programming in R, R Studio. Note that one must
download both R and R-Studio (the latter doesn’t include the former). The R-Studio interface consists of
a layout of several windows:

• Console: This is where you type commands.

• Editor: This is where you write your code and save it to a text file.

• Workspace/History: What values exist in memory, and what’s been executed historically.

• Files/Plots/Packages/Help: Allows graphical navigation of folders, display of visualizations,
methods for installing and loading packages, and also a help utility.

1For questions regarding set-up, please contact the course Teaching Assistant.

3

https://en.wikipedia.org/wiki/S_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)#History
https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://www.r-project.org/contributors.html
http://dirk.eddelbuettel.com/
https://cran.r-project.org/web/packages/Rcpp/index.html
http://hadley.nz/
https://www.tidyverse.org/
https://github.com/mattdowle
https://cran.r-project.org/web/packages/data.table/data.table.pdf
https://cran.r-project.org/
https://owi.usgs.gov/R/training-curriculum/installr/index.html
https://www.rstudio.com/products/rstudio/download/#download

1.2.2 Emacs Speaks Statistics

A more old-school, extensible approach relies on ESS. See documentation. Most notably, to start R we
use M-x R RET. We can send a single line of code from a text file to our ESS process via C-<RET>, or
alternatively we could use C-c C-c to run not an entire block or region of code and then step to the next.

1.2.3 10k Foot Overview

How can we load, visualize, and model data? Let’s learn to work with the dplyr package. It takes a minute
to install, but it’s going to make our lives much simpler down the road when learning how to manipulate
data in R. From within an R-console (or within R-Studio), run the following command:

This first line of code is required only 1x when you

need to install a package for the *first* time.

install.packages("dplyr")

This next line of code is required *every* time you open

up R and want to *use* the package.

require(dplyr)

When you’ve successfully run the commands above, you should see some output from the console
showing that the package was loaded successfuly. If you get an error, please e-mail: rishu@stanford.edu
describing the nature of the error message you ran into.

Now that you’ve loaded the dplyr package, loading data is as easy as π: try pasting the following into
your console (you’ll have to probably retype the “tilde” (~) character that appears in the third line (where
a linear model is specified), since they tend not to paste over correctly from a pdf into a text editor); also,
make sure that the line-breaks (or new-lines) get pasted / broken-apart correctly.

webSite <- 'https://web.stanford.edu/~hastie/ElemStatLearn/datasets/ozone.data'

Load the data into memory, fit a linear model, summarize results.

read.csv(webSite, sep = '\t', header = TRUE) %>%

lm(formula = ozone ~ radiation) %>%

summary

The above created an output summary (with coefficients and p-values!) describing a linear-model fit
when we regressed the variable ozone as a function of radiation. The %<% operator takes the output from
the previous command and pipes it into the input of the subsequent command. It’s pretty impressive that
R can pull data in from the web, fit a model, and print meaningful results in such a syntactically concise
way.

1.3 Help and Documentation

R has fantastic built-in documentation. Simply typing help(<function name>) will pull up a help-page
for a particular function, e.g. help(read.csv). A prefix short hand for help() is the ? operator, e.g. try
inputting ?read.csv into console.

1.3.1 Course Outline

We’re going to summarize the extensive notes captured in Hadley Wickham’s Intro to R and walk through
the parts that feel most essential to getting started! In general, we’re going to start by learning how to
plot data, then we will learn how to transform our data, and finally we’ll combine these two techniques to
answer meaningful questions about our data.

4

https://ess.r-project.org/index.php?Section=download
http://ess.r-project.org/ess.pdf
https://r4ds.had.co.nz/explore-intro.html

2 Additional Set-Up

Please install the following packages before the workshop starts.

packages <- c(

"data.table",

"dplyr",

"foreign",

"ggplot2",

"magrittr",

"reshape2",

"purrr"

)

install.packages(packages)

You can also download some data in advance to make sure the workshop goes smoothly.

download.file(

url = file.path(

"https://raw.githubusercontent.com",

"fivethirtyeight/data/master/foul-balls",

"foul-balls.csv"

),

destfile = "~/Downloads/foul-balls.csv"

)

download.file(paste0("http://archive.ics.uci.edu/ml/machine-learning-databases/00275/",

"Bike-Sharing-Dataset.zip"),

destfile = "bikesharing.zip")

Unzip the contents and create a corresponding data directory. Load, and inspect.

unzip(zipfile = "bikesharing.zip", exdir = "bikesharing")

##

Appendix Materials (BLS data is ~400MB)

##

download.file(

file.path(

"https://data.bls.gov/cew/data/files/2018/csv/",

"2018_qtrly_by_area.zip"

),

"~/Downloads/2018.q1-q4.by_area.zip"

)

unzip("~/Downloads/2018.q1-q4.by_area.zip",

exdir = "~/Downloads/2018.q1-q4.by_area")

download.file(

url = file.path("https://archive.ics.uci.edu/ml",

"machine-learning-databases/00426",

"Autism-Adult-Data%20Plus%20Description%20File.zip"),

destfile = "~/Downloads/autism.zip"

)

unzip("~/Downloads/autism.zip", files = "Autism-Adult-Data.arff", exdir = "~/Downloads")

5

3 Data Visualization

Let’s cover some basic data visualization, using ggplot2. We’ll skip over the base plotting utils in this
section, although they are pretty good. We’ll work with the mpg dataset, included in the ggplot2 package.

install.packages("ggplot2")

Again, the above command only needs to be run 1x per machine you plan to use the package on.
However, each time you load a new R-session and plan to use the package, you must call

require(ggplot2)

With this package, we get access to the mpg dataset, which we’ll be working with in this section.

head(mpg) # head() gives you the first few rows of the data.

A tibble: 6 x 11

manufacturer model displ year cyl trans drv cty hwy fl class

<chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>

1 audi a4 1.8 1999 4 auto(l5) f 18 29 p compa~

2 audi a4 1.8 1999 4 manual(m5) f 21 29 p compa~

3 audi a4 2 2008 4 manual(m6) f 20 31 p compa~

4 audi a4 2 2008 4 auto(av) f 21 30 p compa~

5 audi a4 2.8 1999 6 auto(l5) f 16 26 p compa~

6 audi a4 2.8 1999 6 manual(m5) f 18 26 p compa~

3.1 Univariate distributions

What if we want to visualize the distribution of car manufacturers in our dataset? We can use the table()
command to get a numeric summary (try this in the console!), but how about a visual?

ggplot(data = mpg, aes(x = manufacturer)) +

geom_bar()

0

10

20

30

audi chevrolet dodge ford honda hyundai jeep land rover lincoln mercury nissan pontiac subaru toyota volkswagen
manufacturer

co
un

t

The x-axis describes the manufacturer, and the geom bar() plotting method defaults to plotting raw
counts, i.e. the number of of observations for each manufacturer in our dataset.

Exercise We can also visualize histograms quite easily, simply replacing the geometry used to plot. I.e.
we can replace geom bar() with a different geometry, e.g. geom histogram() or geom density(). Try
plotting both a histogram and a density plot for the city miles-per-gallon, described by variable cty.

6

3.2 Bivariate distributions

Let’s start with a simple visualization of engine size against fuel efficiency in the city.

ggplot(data = mpg, mapping = aes(x = displ, y = cty)) +

geom_point()

●

●
●
●

●

● ●●

●

●
●

●

● ●

●●

●
●

●

●

●
●

●

●
●

●
● ●

●

● ●

●

●

●

● ●
●

●
●

●●
●●

●

●●
● ●

●
●

●
● ●●

●

●●

● ●

●

●

●

●

●
●

●

●●
●

●

●●

●

●● ●
●

●
●
●
● ● ●

●●
●●●

●

●

●●
●
●

●●●●
●

●

●
●

●
●

●
●
●

●

●●

●●

●●
●●●

●●

●
●
● ●

● ●
●

●

●
●

●●
● ●

● ●●
●

●
● ● ●

●

●

●●

●●
●
● ●

●
●

●

●

●

●
●
●

●

●●

●
●
●

●

●

● ●●
●●
●
●

●
●

●●
●

●

●● ●●

●●
●

●● ●
●

●● ●

●●

●

●

●

●

●

●
●
●

●● ●
●

●

●

●
●

●

●

●

●

●
● ●●

●
●

●

●

●

●
●●

●

●
●

●

●

●
●

10

15

20

25

30

35

2 3 4 5 6 7
displ

ct
y

There is a strong negative relationship between displacement and fuel efficiency, which we would expect.

3.2.1 Adding Additional Dimensions to your Plots

What about whether the car is front, rear, or all-wheel drive. Would that affect mileage? We can add a
third dimension to our plot by colour each data point according to whether the cars drivetrain type.

ggplot(data = mpg, mapping = aes(x = displ, y = cty, colour = drv)) +

geom_point()

●

●
●
●

●

● ●●

●

●
●

●

● ●

●●

●
●

●

●

●
●

●

●
●

●
● ●

●

● ●

●

●

●

● ●
●

●
●

●●
●●

●

●●
● ●

●
●

●
● ●●

●

●●

● ●

●

●

●

●

●
●

●

●●
●

●

●●

●

●● ●
●

●
●
●
● ● ●

●●
●●●

●

●

●●
●
●

●●●●
●

●

●
●

●
●

●
●
●

●

●●

●●

●●
●●●

●●

●
●
● ●

● ●
●

●

●
●

●●
● ●

● ●●
●

●
● ● ●

●

●

●●

●●
●
● ●

●
●

●

●

●

●
●
●

●

●●

●
●
●

●

●

● ●●
●●
●
●

●
●

●●
●

●

●● ●●

●●
●

●● ●
●

●● ●

●●

●

●

●

●

●

●
●
●

●● ●
●

●

●

●
●

●

●

●

●

●
● ●●

●
●

●

●

●

●
●●

●

●
●

●

●

●
●

10

15

20

25

30

35

2 3 4 5 6 7
displ

ct
y

drv

●

●

●

4

f

r

It becomes clear from this plot that the interaction of displacement and city-mileage is predictive
of the drivetrain type. I.e. cars with really low displacement and high MPG are always front-wheel drive,
whereas cars with lower fuel-economy can be partitioned into two groups in part based on displacement:
cars with lower fuel-economy that are also high displacement tend to be rear-wheel drive, for example.

7

Preliminary Exercise Let’s walk through a simple exercise. Suppose we wanted to use a graphical
summary to learn approximately how many cars in our dataset have less than 10 miles-per-gallon in the
city. One way we could answer this question is with a univariate distribution (i.e. a histogram); we saw
how to do this above in the exercise in the plotting univariate distributions section. How does this result
conflict with what we see if we count the number of points falling below the y-intercept corresponding to
10 MPG in the plot below?

ggplot(data = mpg, mapping = aes(x = displ, y = cty)) +

geom_point() +

geom_hline(yintercept = 10)

●

●
●
●

●

● ●●

●

●
●

●

● ●

●●

●
●

●

●

●
●

●

●
●

●
● ●

●

● ●

●

●

●

● ●
●

●
●

●●
●●

●

●●
● ●

●
●

●
● ●●

●

●●

● ●

●

●

●

●

●
●

●

●●
●

●

●●

●

●● ●
●

●
●
●
● ● ●

●●
●●●

●

●

●●
●
●

●●●●
●

●

●
●

●
●

●
●
●

●

●●

●●

●●
●●●

●●

●
●
● ●

● ●
●

●

●
●

●●
● ●

● ●●
●

●
● ● ●

●

●

●●

●●
●
● ●

●
●

●

●

●

●
●
●

●

●●

●
●
●

●

●

● ●●
●●
●
●

●
●

●●
●

●

●● ●●

●●
●

●● ●
●

●● ●

●●

●

●

●

●

●

●
●
●

●● ●
●

●

●

●
●

●

●

●

●

●
● ●●

●
●

●

●

●

●
●●

●

●
●

●

●

●
●

10

15

20

25

30

35

2 3 4 5 6 7
displ

ct
y

Can you guess how many data-points (i.e. cars) have less than 10 miles-per-gallon from the figure
above?

Adding Noise to Make the Picture More Clear It turns out that there’s actually a lot of overlapping
datapoints in our scatterplot above. We can apply some random noise to make the plot a bit easier to
read by by using a geom jitter geometry.

ggplot(data = mpg, mapping = aes(x = displ, y = cty, colour = cty < 10)) +

geom_jitter()

●

●
●

●

●

● ●●

●

●
●

●

● ●

●
●

●
●

●

●

●

●
●

●
●

●
● ●

●

● ●

●

●

●

● ●
●

●

●
●●

●●

●

●
●

● ●
●

● ●
● ●

●

●

●●

● ●

●

●

●

●

●
●

●

●●

●

●

●●

●

●● ●
●

●

●
●

● ● ●

●●
●●●

●

●

●●
●

●
●●●●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●
● ●●●

●●

●
●

●
●

● ●
●

●

●

●

●●

● ●
● ●

●

●

●
● ● ●

●

●

●●

●●
●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●
●●

●

●

●
●

●●

●

●

●
● ●●

●●
●

●
● ●

●

●●
●

●
●

●

●

●

●

●

●
●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

10

20

30

2 3 4 5 6 7
displ

ct
y

cty < 10

●

●

FALSE

TRUE

8

Here it is much easier to see that, for example, there are several cars with fewer than 10 city miles-per-
gallon, all having just under 5 liters displacement. Notice that we created an expression “on-the-fly” and
used it to colour out points. . . cool!

3.3 Visualizing Smoothed Relationships with Modeling Techniques

With ggplot2, it’s actually really easy to visualize smoothed relationships derived from fitted models. For
example, consider the following plot:

ggplot(mpg, aes(x = displ, y = cty)) +

geom_smooth()

15

20

25

2 3 4 5 6 7
displ

ct
y

We’ve basically plotted a smoothed average alongside confidence intervals. Notice a couple things: (i)
there is a (perhaps surprising) quadratic relationship between the two variables, and (ii) the variance of our
estimates increass as we increase displacement (since there are fewer observations to back each estimate).

Fitting separate models based on another variable It’s pretty amazing really, that we can in fact
fit a separate relationship between two variables according to a third.

ggplot(mpg, aes(x = displ, y = cty, colour = drv, linetype = drv)) +

geom_smooth()

10

15

20

25

2 3 4 5 6 7
displ

ct
y

drv

4

f

r

9

3.4 Statistical Transformations when Plotting

Some geom *’s compute variables (such as counts and proportions) automatically when we call them, and
we can specify which variable to plot in the aesthetic. I.e. it’s as though we have access to the computed
variable even though it doesn’t appear in our raw data! For example, there’s a dataset called diamonds

that describes various attributes of gems. For reference, this is what our data looks like:

A tibble: 3 x 10

carat cut color clarity depth table price x y z

<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43

2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31

3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31

We could plot out a simple bar-plot: how many times each cut of diamond appears in our data?

ggplot(diamonds, aes(x = cut)) +

geom_bar()

0

5000

10000

15000

20000

Fair Good Very Good Premium Ideal
cut

co
un

t

This code is actually equivalent to the following

ggplot(diamonds, aes(x = cut)) +

geom_bar(stat = "count")

Realize that we never computed a statistic called count, but that it was calculated for us automatically
and we were able to use it in our plot.

Plotting proportions in bar charts But maybe the actual frequency is less important (e.g. suppose
we’re working with down-sampled data in order to fit it in memory), and all we care about are proportions
instead. Well, if one were to look for help on the geom bar() command by typing ?geom bar() into their R
console, and then searching for “computed variables”, we would learn that proportion is also a computed
statistic. I.e. there is some advanced syntax (we won’t cover in the workshop, but mentioned here, for
example) that lets us use these computed proportions. Perhaps a more interpretable tool to use is the
after stat utility:

ggplot(diamonds, aes(x = cut, y = after_stat(count / sum(count)))) + geom_bar()

Here, we’ve basically supplied the statistical transformation manually ourselves (i.e. take the count of
how often something appears in our data, and divide it by the sum of counts to get a proportion).

10

https://rstudio-pubs-static.s3.amazonaws.com/291083_2b0374fddc464ed08b4eb16c95d84075.html

4 Revisiting a Couple of Basics in R

4.1 As (an extensible) Calculator

R replaces our graphing calculators. Simply write an expression into the console and hit <return>. E.g.

10^2 + 36

[1] 136

Exercise Compute the difference between 2021 and the year you graduated from your most recent
educational program. Divide this by the difference between 2021 and the year you were born. Multiply
the resulting value by 100 to determine the percentage of your life that you have been enjoying the fruits
of your labor. You may find the use of parentheses helpful to disambiguate order of operations.

I was born in 1989 and graduated in 2017, and so the expression for me looks as follows:

(2021 - 2017) / (2021 - 1989) * 100

4.1.1 Variables

We can also give values a name. When we attach an identifier to a value, we realize a variable. E.g.

a <- 4

If you’re using R-Studio, you’ll now notice that a appears in the workspace window. We can also ask
R what value a takes on, simply by typing a followed by <return> in the command window.

a * 5 # We can perform calculations on a variable, e.g.

[1] 20

If we specify a new value for a, we lose the old value.

a <- a + 10

a

[1] 14

We can view all the objects in our workspace by typing ls().

Exercise Repeat the previous exercise, calculating the percentage of your life since graduating, this time
taking several steps to arrive at the final result. Assign each intermediate result to a variable, whose name
can be one of your choosing (but is required to begin with a letter). I recommend using the following
variable names: nYearsSinceGraduation, Age. The resulting expression then becomes

nYearsSinceGraduation / age * 100

11

4.1.2 Scalars and Vectors

Numerical values are represented via scalars (single numbers, zero dimensional), vectors (a column of
numbers, one dimensional), and matrices (a table of data, two dimensional). In our previous example,
the a we defined was a scalar. To define a vector of values, we use the c() command which stands for
concatenate. E.g.

vals <- c(4, 7, 10)

We can also create a sequence of consecutive integers using the : operator.2 E.g. inputting 0:9 into
your console will return a length 10 vector of ordered digits.

4.1.3 (Using) Functions

What if we want to compute the average of the elements in vals above? We could manually type

(4 + 7 + 10) / 3

but this would be error prone and impracticable for more interesting calculations. Common tasks are
automated into functions : given input(s), they have a sequence of computations which yield an output.
Some functions are available in base R, some are available in packages on CRAN, and if all else fails we
can always write our own. To compute an arithmetic average, we simply type3

mean(vals) # Outputs the scalar value 7, of course!

Within the parentheses, we’ve specified the function arguments (or parameters). For the mean function,
it requries an x vector for which we will compute an arithmetic average.

Exercise Compute the sum of 4, 5, 8, 11 by first combining the elements into a single vector and
then using the function sum.

myVector <- c(4, 5, 8, 11)

sum(myVector)

Exercise What’s the sum of consecutive integers between 1 and 100 inclusive? Hint: help(":").4

4.2 Built-in Statistical Functions

What’s so great about R is that it has statistical functions built-in and easily accessible. E.g. if we type

rnorm(10)

we create a vector of ten draws from a standard normal distribution. If we run the same command
again, we’ll see ten different random numbers. To draw from a non-standard normal with mean µ = 10
and standard deviation σ = 3, we may execute rnorm(n = 4, mean = 10, sd = 3), where here we’ve
specified our arguments by name to disambiguate our intent (recommended). We remark that in R-Studio,
if we simply type rnorm(within the command window, followed by pressing TAB, we will be prompted
with the possible arguments to the function.5

2If we want non-consecutive but equi-spaced values, we can use seq, e.g. seq(0, pi, length.out = 5) generates five
evenly spaced values between zero and π.

3Built-in functions are not only correct, they’re also optimized to be faster than what you could implement if you defined
the same procedure yourself!

4Do you remember the formula for the sum of consecutive integers between 1 and N as a function of N? Hint: for any
n ∈ N, what is the result of the computation 1:n + n:1? What does each value take on, and how many values are there?

5Emacs and ESS have similar functionality built-in.

12

https://en.wikipedia.org/wiki/Argument_of_a_function
https://en.wikipedia.org/wiki/Parameter_(computer_programming)

Exercise Draw 100 random numbers from a normal distribution, assign the result to a variable x. Then,
plot the result using plot(x). Note: we could use ggplot2 to do this, but we’d have to cover how to
construct a data.frame first and that’s left for the next section!

rnorm(1e5) %>%

hist(breaks = 100, main = "A Standard Normal Distribution")

A Standard Normal Distribution

.

F
re

qu
en

cy

−4 −2 0 2 4

0
30

00

In ggplot2 (and using data.frame's):

df <- data.frame(x = rnorm(1e5))

ggplot(df, aes(x)) + geom_histogram(bins = 100)

Note: the %>% operator takes the output from “the function on the left” and feeds it as argument to the
“operator on the right”; you must be dilligent and understand what the operator on the right is expecting!

Exercise Apply the cumsum function to generate an auto-correlated time series.

rnorm(1e5) %>% cumsum() %>% plot(type = "l", main = "Stock Market Simulation")

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−
25

0
0

Stock Market Simulation

Index

.

Again, if we wanted to use ggplot2 we'd have to use data.frame's. Not disadvantageous.

df <- data.frame(x_var = 1:1e5, y_var = cumsum(rnorm(1e5)))

ggplot(df, aes(x = x_var, y = y_var)) + geom_line()

13

4.3 Assignment Operators

In R, there are two ways you can assign a variable, either using <- or =. You may have noticed in one of
the above function calls to rnorm() or plot(), that we specified our arguments using the = operator.

But it's true that in R, to assign a variable, you can write either write:

variable <- rnorm(10)

variable = rnorm(10) # <-- But! Writing this is also valid!

We prefer to use <- when assigning variables. Now, there’s a difference when it comes to initializing
function arguments : here, you should always use =. I.e.

sample(x = 100) # Randomly permutes the first 100 positive integers

If we had used <- instead, this would have actually created a variable called x and then passed this
variable into the function, with the side-effect of the variable x persisting after the function call. You can
see this if you use ls(), which lists out objects in the (global) namespace.

rm(list=ls()) # Clear workspace (don't save this in your scripts).

result <- sample(x <- 10)

ls()

[1] "result" "x"

We now have a variable that exists in our global workspace whose name is x and value is 10. We
probably didn’t want that: to create a separate variable. We most likely just wanted to pass in an integer
literal 10 to the function as an argument. This is admittedly a quirk with R; to understand it:

• When you call a function, the arguments are evaluated first before the function procedure is executed.

• When you write x <- 10, you are passing an expression as argument, in particular the expression is
an assignment operation x <- 10, so this gets evaluated first in global scope.

Takeaway: use <- only when assigning variables in global scope, not initializing function arguments.

4.4 Scripts

One advantage of R is in reproducibility. I.e. instead of using point-and-click GUI’s to navigate spreadsheet
calculations, for example, we can embed these instructions into code which is reusable. We store a sequence
of R expressions in .R files which we call scripts. It’s possible to run the entirety of another script from
within R by using the source() function.

Exercise Make a file titled firstRScript.R in your current working directory. Request that R generate
a hundred random numbers uniformly at random from an interval [a, b] for any a, b ∈ R of your choosing.
Hint: see ?runif for help on how to draw values uniformly at random from an interval. Assign the
resulting draws to a variable, and plot the result using plot(). Then, run this script a couple times, using
source() from within an R console.

plot(runif(100, -1e3, 1e3))

df <- data.frame(x = 1:100, y = runif(100, -1e3, 1e3))

ggplot(df, aes(x, y)) + geom_point()

14

https://en.wikipedia.org/wiki/Graphical_user_interface

5 Data Frames

The canonical data structure for statistical data analysis is a data.frame. Unlike Python, data.frames
are built-in to R, and unlike Matlab, columns of a data.frame may be referenced by name so that we
don’t need to remember their position. A data.frame is simply a (named) list of vectors, each the same
length. Usually, we obtain a data.frame by loading data into R.

5.1 Using read.csv to read in spreadsheet data

Let’s go to data.fivethirtyeight.com and scroll down or search for a data-set called Foul Balls; down-
load the file and unzip foul balls.zip, and then extract the .csv file. You can do this all manually
or you can do it programmatically, in fact. If we navigate through the web UI, we see that there is
a copy of the data stored at https://raw.githubusercontent.com/fivethirtyeight/data/master/

foul-balls/foul-balls.csv.
We can simply do:

download.file(

url = file.path(

"https://raw.githubusercontent.com",

"fivethirtyeight/data/master/foul-balls",

"foul-balls.csv"

),

destfile = "~/Downloads/foul-balls.csv"

)

data <- read.csv("~/Downloads/foul-balls.csv")

Exercise There’s another function called read.table(), which also allows you to read in tabular data
(of which comma separated value files happen to be a special type). Can you find a way to read in the
data using read.table()? See ?read.table, and in particular think about how you might choose the sep

argument to be different from the default of what read.table() provides.

5.2 Indexing into Data.Frames

We can easily index into rows and columns just like we index into matrices:

Request the first 3 rows using *slicing*.

data %>% slice(1:3)

matchup game_date type_of_hit exit_velocity predicted_zone

1 Mariners vs Twins 2019-05-18 Ground NA 1

2 Mariners vs Twins 2019-05-18 Fly NA 4

3 Mariners vs Twins 2019-05-18 Fly 56.9 4

camera_zone used_zone

1 1 1

2 NA 4

3 NA 4

15

data.fivethirtyeight.com
https://raw.githubusercontent.com/fivethirtyeight/data/master/foul-balls/foul-balls.csv
https://raw.githubusercontent.com/fivethirtyeight/data/master/foul-balls/foul-balls.csv

Request the first 3 rows and the first 3 columns.

data %>% slice(1:3) %>% select(1:3)

matchup game_date type_of_hit

1 Mariners vs Twins 2019-05-18 Ground

2 Mariners vs Twins 2019-05-18 Fly

3 Mariners vs Twins 2019-05-18 Fly

Request rows 2 and 5 as well as two columns by name.

data %>% slice(c(2,5)) %>% select(game_date, type_of_hit)

game_date type_of_hit

1 2019-05-18 Fly

2 2019-05-18 Fly

Using operator$ to Extract Columns Since a data.frame is a list of columns (each of the same
length), we can also use operator$ to extract columns (i.e. elements) from our data.frame (which is a
list). E.g. let’s count (using table() the number of entries of each type in the matchup column.

table(data$matchup)

##

A's vs Astros Braves vs Mets Brewers vs Mets

109 73 85

Dodgers vs Diamondsbacks Mariners vs Twins Orioles vs Twins

86 100 113

Phillies vs Marlins Pirates vs Brewers Rangers vs Jays

75 111 87

Yankees vs Orioles

67

Here, we’ve indexed into our data and in particular we’ve extracted a column using operator$. In
dplyr, this would look like the following expression, where we remark that a data.frame is returned (not
a named vector).

data %>% group_by(matchup) %>% count()

5.3 Techniques for Data Inspection

One of the first things I like to do is simply inspect our data. We can look at the first few rows by using
the head() command:

head(data, n = 3)

matchup game_date type_of_hit exit_velocity predicted_zone camera_zone used_zone

1 Mariners vs Twins 2019-05-18 Ground NA 1 1 1

2 Mariners vs Twins 2019-05-18 Fly NA 4 NA 4

3 Mariners vs Twins 2019-05-18 Fly 56.9 4 NA 4

16

We immediately notice, for example, that we have some missing values in the fields exit velocity

and camera zone. We can use dim() to request the dimensions of our data. The summary() command is
also useful to tabulate statistics on each column.

dim(data)

str(data)

summary(data)

Exercise: How many entries (or cells, speaking in spreadsheet terms) are in our data.frame? Hint: use
the functions nrow() and ncol().

Visualizing an entire data.frame We can even plot out all of our data at once, making a pairwise
scatter plot relation.

plot(data)

5.4 Re-order rows of a data.frame via dplyr::arrange()

Unlike sort ing a vector, data.frames typically have row-reorder ing operations performed on them. Ac-
cordingly, instead of sort() we use order() (in Base R); in the tidyverse or with dplyr we can simply
use arrange.

data %>% arrange(matchup)

We can order in descending order by using an argument!

data %>% arrange(matchup, decreasing = TRUE) %>% {rbind(head(., n = 2), tail(., n = 2))}

matchup game_date type_of_hit exit_velocity predicted_zone camera_zone used_zone

1 A's vs Astros 2019-06-02 Fly 82.6 5 NA 5

2 A's vs Astros 2019-06-02 Fly NA 1 1 1

905 Yankees vs Orioles 2019-03-31 Fly 71.4 5 NA 5

906 Yankees vs Orioles 2019-03-31 Fly 86.5 4 NA 4

5.5 Data Transformations

There are some common data transformations that you’ll find yourself wanting to perform when carry-
ing out statistical analyses. Note that we’ll cover some more advanced operations like reshaping and
aggregating data in a later section; see .

5.5.1 Filtering rows using filter()

It’s really simple to filter out rows by using predicate conditions. E.g.

filter(data, type_of_hit == "Ground") %>% head(n = 5)

17

matchup game_date type_of_hit exit_velocity predicted_zone camera_zone used_zone

1 Mariners vs Twins 2019-05-18 Ground NA 1 1 1

2 Mariners vs Twins 2019-05-18 Ground NA 1 1 1

3 Mariners vs Twins 2019-05-18 Ground NA 1 1 1

4 Mariners vs Twins 2019-05-18 Ground 76.2 2 NA 2

5 Mariners vs Twins 2019-05-18 Ground 96.2 4 NA 4

Notice that it’s simple enough to add in multiple predicate conditions, simply spearate them with a
comma!

filter(data, type_of_hit == "Ground", exit_velocity > 90) %>% head(n = 5)

matchup game_date type_of_hit exit_velocity predicted_zone camera_zone used_zone

1 Mariners vs Twins 2019-05-18 Ground 96.2 4 NA 4

2 Mariners vs Twins 2019-05-18 Ground 100.8 5 5 5

3 Mariners vs Twins 2019-05-18 Ground 92.1 5 NA 5

4 Mariners vs Twins 2019-05-18 Ground 96.8 5 5 5

5 Mariners vs Twins 2019-05-18 Ground 100.7 4 4 4

Of course, you can also use an “or” condition via the logical-or operator. . . something of the flavor

filter(df, predicate_1 | predicate_2)

Once you realize this works, of course you can always rewrite our logical and statements explicitly in
the penultimate example:

filter(data, type_of_hit == "Ground" & exit_velocity > 90) %>% head(n = 5)

matchup game_date type_of_hit exit_velocity predicted_zone camera_zone used_zone

1 Mariners vs Twins 2019-05-18 Ground 96.2 4 NA 4

2 Mariners vs Twins 2019-05-18 Ground 100.8 5 5 5

3 Mariners vs Twins 2019-05-18 Ground 92.1 5 NA 5

4 Mariners vs Twins 2019-05-18 Ground 96.8 5 5 5

5 Mariners vs Twins 2019-05-18 Ground 100.7 4 4 4

5.6 Adding New Variables to a data.frame

Adding a new variable to a data.frame can be done in a variety of different and equivalent ways.

Add a column by using integer position.

Note that if we do this, the new variable name

is of the vorm Vk, where k is an integer describing

the column number.

data[, ncol(data) + 1] <- data$game_date

head(data[, c("game_date", "V8")], n = 3)

game_date V8

1 2019-05-18 2019-05-18

2 2019-05-18 2019-05-18

3 2019-05-18 2019-05-18

18

We can also (more readably) assign to a new column

and give it an interpretable name at the same time.

data[, "zone_gt_2"] <- data[, "used_zone"] > 2

data[1:5, "zone_gt_2"]

[1] FALSE TRUE TRUE FALSE FALSE

We can also use our technique of using operator\£ to

grab columns.

data$logged_exit_velocity <- log(data$exit_velocity, base = 2)

data %>%

filter(!is.na(exit_velocity)) %>%

select(ends_with("exit_velocity")) %>%

head(n = 3)

exit_velocity logged_exit_velocity

1 56.9 5.830357

2 78.8 6.300124

3 74.8 6.224966

5.6.1 dplyr::mutate()

There’s also the dplyr way, which is to use mutate().

data %>%

mutate(transform_of_zones = predicted_zone + sqrt(camera_zone) + used_zone^2) %>%

select(matchup, predicted_zone, camera_zone, used_zone, transform_of_zones) %>%

filter(!is.na(transform_of_zones)) %>%

arrange(transform_of_zones, decreasing = TRUE) %>%

head(n = 3)

matchup predicted_zone camera_zone used_zone transform_of_zones

1 Mariners vs Twins 1 1 1 3

2 Mariners vs Twins 1 1 1 3

3 Mariners vs Twins 1 1 1 3

Note that the mutation adds a variable to an existing data.frame, but not in place. There are many
useful transformations on data we can apply, e.g. creating lagged variables.

data %>%

group_by(matchup) %>%

mutate(

last_game_played = lag(game_date),

cumulative_velocity = cumsum(ifelse(is.na(exit_velocity), 0, exit_velocity))

) %>%

select(matchup, game_date, last_game_played, exit_velocity, cumulative_velocity) %>%

head(n = 4)

A tibble: 4 x 5

19

Groups: matchup [1]

matchup game_date last_game_played exit_velocity cumulative_velocity

<chr> <fct> <fct> <dbl> <dbl>

1 Mariners vs Twins 2019-05-18 <NA> NA 0

2 Mariners vs Twins 2019-05-18 2019-05-18 NA 0

3 Mariners vs Twins 2019-05-18 2019-05-18 56.9 56.9

4 Mariners vs Twins 2019-05-18 2019-05-18 78.8 136.

5.7 Tabulating two categorical fields

We might already be familiar that we can use table() to get a count of the number of times each value
in the input appears. But we can also do this with more than just one argument! Here, we showcase using
two arguments. There is one field called predicted zone which describes a prediction for where the foul
ball will end up, and another field called camera zone which describe where the ball actually ended up, as
observed by a camera. How good are our predictions? We can make a confusion matrix using table().

confusion_matrix <- table(predicted = data$predicted_zone,

observed = data$camera_zone)

confusion_matrix[1:3, c(1:2, 4)] # Just look at the first few rows and columns...

observed

predicted 1 2 4

1 240 0 0

2 1 3 7

3 0 0 0

How do we read this table? When we predict, say, zone 2, it turns out that we once observed the ball
land in zone one, three times in zone two, and seven times in zone four.

Exercise: Can you count the number of times that we got the “right” answer, programatically? I don’t
mean a rate, simply the sum total number of times that our prediction matched the observed outcome.
Hint: consider using sum() and diag().

Accuracy We see that we have fairly decent accuracy.

accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)

paste0("Accuracy = ", round(accuracy * 100, 2), "%")

[1] "Accuracy = 96.95%"

5.8 Imputation

What if we want to replace our NA’s with some data? There are many ways to do data imputation, but
let’s just cover the most basic syntax. Perhaps we want to fill is missing values for exit velocity with
the average exit-velocity. To do this:

20

missing_idx <- which(is.na(data$exit_velocity))

data[missing_idx, "exit_velocity"] <- mean(data$exit_velocity, na.rm = TRUE)

Note that there are several important steps going on here:

• We first create an integer vector describing the indices of missing elements in the exit velocity

vector. We’ve used is.na() to return a vector of Booleans, and we’ve used which() to tell us which
of the Booleans evaluated to TRUE.

• When we make a replacement to our data.frame, we have to specify which rows and which column
we are modifying. In this case, the syntax data[missing idx, ’’exit velocity’’] signifies that
we’re going to assign values to the missing entries in our column of interest.

• When we impute with the average value, we’ve used the argument na.rm = TRUE to calculate the
average among the non-missing values of our input. If we removed this, it would default to na.rm =

FALSE, and then we’d get an NA back as answer.

We could more easily do the above using tidyimpute. . . but that’s for another day!

Exercise Can you replace camera zone missing values with the most frequently recurring camera zone

value? Hint: see functions: table(), which.max(), names(), and as.integer().

5.9 Other Ways of Getting data.frames Into R

There are a myriad of ways to get data into R, including things like reading from DataBase connections,
but we’ll mention some of the more handy methods.

5.9.1 Remote Files

Note that the argument (input) to the read.csv or read.table commands don’t have to be local files,
they can be remote files as well. We simply input the URL instead of the file-path. For example, the
baseball data is also available on GitHub at https://raw.githubusercontent.com/fivethirtyeight/

data/master/foul-balls/foul-balls.csv.

link <- paste0("https://raw.githubusercontent.com/",

"fivethirtyeight/data/master/foul-balls/",

"foul-balls.csv")

fouls <- read.csv(link)

5.9.2 Copy Paste

One of my favorite ways of loading data into R is the copy-paste method, which can vary by platform.

name height weight

Andreas 70 174

Kristoffer 74 145

Monika 63 125

21

https://raw.githubusercontent.com/fivethirtyeight/data/master/foul-balls/foul-balls.csv
https://raw.githubusercontent.com/fivethirtyeight/data/master/foul-balls/foul-balls.csv

data <- read.delim("clipbloard") # Works on Windows, Linux

data <- read.delim(pipe("pbpaste")) # Works on iOS.

To work with the code above, remember to add sep = " " argument to the read.delim command to
inform R that the delimiter between columns is a space.

6 Aggregating and Reshaping Data

6.1 Aggregation of Data

There are ways to do this using base R only, but we leave this for an appendix.

6.1.1 Summarizing Multiple Columns

Although the aggregate function does have syntax to support applying one function to multiple columns
(with one or more grouping columns), it’s not that flexible: we can’t apply different functions to different
columns of our data. For that, we could either make two different calls to our aggregate function, and
then merge the results, or we could use an R package that facilitates aggregation of data.

install.packages("dplyr")

require(dplyr)

fouls %>%

group_by(type_of_hit) %>%

summarize(avg = mean(exit_velocity, na.rm = TRUE),

std = sd(exit_velocity, na.rm = TRUE))

A tibble: 5 x 3

type_of_hit avg std

<fct> <dbl> <dbl>

1 Batter hits self 69.4 7.92

2 Fly 76.7 10.8

3 Ground 74.4 14.6

4 Line 82.2 17.1

5 Pop Up 74.3 5.99

6.2 Reshaping Data

It’s often the case that you want to reshape your data in order to facilitate analysis or plotting.

Melting a data.frame into Long Format Let’s take the dataset we just created in the last example,
and see how we can reshape it from its current wide format into a long format. To do this, we’ll make use
of the data.table package.

install.packages("reshape2")

require(reshape2)

22

Use "gather" to go from wide to long.

long <- fouls %>%

group_by(type_of_hit) %>%

Ie we only executed summarize, we'd get one column per variable.

summarize(avg = mean(exit_velocity, na.rm = TRUE),

std = sd(exit_velocity, na.rm = TRUE)) %>%

If we add a 'melt' command, we can collect values into a common column.

reshape2::melt(id.vars = "type_of_hit")

print(long)

type_of_hit variable value

1 Batter hits self avg 69.380000

2 Fly avg 76.737027

3 Ground avg 74.402564

4 Line avg 82.178571

5 Pop Up avg 74.273913

6 Batter hits self std 7.918775

7 Fly std 10.810123

8 Ground std 14.582302

9 Line std 17.082776

10 Pop Up std 5.992715

Casting a data to wide format If we want, we could undo the operation with a spread command to
widen our data, using pivot wider in tidyr, but I find the syntax pretty confusing. I prefer the lesser of
two evils and choose reshape2::dcast.

Now do the opposite, go from long to wide via pivot_wider.

For this, I personally prefer reshape2 package.

wide <- reshape2::dcast(long, type_of_hit ~ variable)

print(wide)

type_of_hit avg std

1 Batter hits self 69.38000 7.918775

2 Fly 76.73703 10.810123

3 Ground 74.40256 14.582302

4 Line 82.17857 17.082776

5 Pop Up 74.27391 5.992715

7 Putting It All Together

Let’s take a second to go over a simple statistical analysis, to put what we’ve learned together and see an
R analysis wholistically.

7.1 Data Collection, Ingestion

It starts with data collection. Here, we show how you can actually use a download.file() function to
fetch a .zip file from the web, then programatically unzip() it.

23

require(magrittr)

Download a zip file of bike-share data.

download.file(paste0("http://archive.ics.uci.edu/ml/machine-learning-databases/00275/",

"Bike-Sharing-Dataset.zip"),

destfile = "bikesharing.zip")

Unzip the contents and create a corresponding data directory. Load, and inspect.

unzip(zipfile = "bikesharing.zip", exdir = "bikesharing")

bshare <- read.csv("bikesharing/hour.csv")

bshare %>% slice(1:3) %>% select(1:8)

instant dteday season yr mnth hr holiday weekday

1 1 2011-01-01 1 0 1 0 0 6

2 2 2011-01-01 1 0 1 1 0 6

3 3 2011-01-01 1 0 1 2 0 6

7.2 Data Visualization

What’s the univariate distribution of rideshares? See ?hist for documentation.

ggplot(bshare, aes(x = cnt)) +

geom_histogram(bins = 50) +

labs(title = "Histogram of Rideshares",

x = "# Rideshares",

y = "# Observations")

0

500

1000

1500

0 250 500 750 1000
Rideshares

O

bs
er

va
tio

ns

Histogram of Rideshares

The fact that the number of rideshares has non-trivial range which spans orders of magnitude suggests
that a log-transform may be appropriate in a linear model. Our date-variable is already pulled apart with
year, month, day, hour and metafeatures such as holiday or workday.

bshare %>%

group_by(mnth) %>%

summarise(ttl = sum(cnt)) %>%

ggplot(aes(x = mnth, y = ttl)) +

geom_line() +

labs(title = "Seasonality in Bicycle Ridesharing",

x = "Calendar Month",

y = "# Rideshares")

24

150000

200000

250000

300000

350000

2.5 5.0 7.5 10.0 12.5
Calendar Month

R

id
es

ha
re

s

Seasonality in Bicycle Ridesharing

7.3 A First Model

We get excited, seeing that there is a relationship between rideshares and calendar month. Let’s try
building a haphazard linear-model using lm(), which estimates the marginal effects of each variable on a
response under some assumptions, which are details of interest for a different workshop.

m <- lm(cnt ~ mnth + hr + holiday + weekday + workingday + temp + hum + windspeed,

data = bshare)

In this linear model, we’ve specified that we want to regress (or model) the response variable of counts as
a function of the month, hour-of-day, holiday indicator, weekday level, workingday indicator, temperature,
humidity, and windspeed. There’s potentially useful output here if we inspect summary(m), but not quite
yet because we have violated the linear modeling assumptions. Note that in the formulae notation, when
we write + we’re not really saing add the variables together, we’re rather saying to simpy include them.

7.4 Checking Linear Model Assumptions

Garbage-in, garbage-out, however: our linear model assumptions were violated.

Determine if any non-linear relationships were left out

of the month feature.

bshare %>%

mutate(residual = resid(m)) %>%

group_by(mnth) %>%

summarise(mean_residual = mean(residual)) %>%

ggplot(aes(x = mnth, y = mean_residual)) +

geom_line() +

labs(title = "Rideshares don't follow a linear relationship with Month",

x = "Month",

y = "Average Prediction Error")

−40

−20

0

20

2.5 5.0 7.5 10.0 12.5
Month

A
ve

ra
ge

 P
re

di
ct

io
n

E
rr

or

Rideshares don't follow a linear relationship with Month

25

https://en.wikipedia.org/wiki/Linear_regression#Assumptions

Yikes! We totally ignored seasonality, even though it looked like our month variable was statistically
significant. The problem lies within the formatting of our data: the month variable was left as integer,
wherein we assume that for example there is a linear relationship in ridesharing with respect to calendar
month, which doesn’t really make sense. Let’s try again with a factor coding. See ?factor, and ?I.

m <- lm(cnt ~ I(factor(mnth)) + hr + holiday + weekday + workingday + temp + hum

+ windspeed, data = bshare)

Verify non-linear relationships have been explicitly modeled.

bshare %>%

mutate(residual = resid(m)) %>%

group_by(mnth) %>%

summarise(mean_residual = mean(residual)) %>%

summarise(all(mean_residual < 1e-7))

A tibble: 1 x 1

`all(mean_residual < 1e-07)`

<lgl>

1 TRUE

Ah, there we go; much better! Here, we’ve encoded an indicator variable for each month, leaving out
the first level by default (January in this case).

7.5 Iterative Model Refinement

What about our hour variable? It’s also significant. But the same problem was made! There isn’t expected
to be a linear relation between hour of day and number of bicycle rideshares. There’s more than likely
different fixed effects, with a possibly sinusoidal pattern as a function of daylight. Easiest is to simply
encode fixed effects for each hour via a factor, as before. In fact, we can use a similar code to verify the
same is true for weekday, so we take care of that as well.

Very that our linearity assumption was violated; we see clear commute and

day-of-week effects.

bshare %>%

mutate(residual = resid(m)) %>%

group_by(hr) %>%

summarise(mean_residual = mean(residual)) %>%

ggplot(aes(x = hr, y = mean_residual)) +

geom_line() +

labs(title = "We Forgot Commute-Effects",

x = "Hour",

y = "Average Residual")

26

−100

0

100

200

0 5 10 15 20
Hour

A
ve

ra
ge

 R
es

id
ua

l

We Forgot Commute−Effects

We’ve clearly left unexplained variation in the response on the table. Replacing factors for relevant
integer-coded variables, including workingday.

m <- lm(cnt ~ I(factor(mnth)) + I(factor(hr)) + I(factor(weekday)) +

I(factor(workingday)) + holiday + temp + hum + windspeed, data = bshare)

summary(m) <-- This prints useful output but its a bit verbose.

Do you notice that in the above model summary, one of the coefficients is listed as Not Available (i.e.
NA)? To learn why, take our Stats workshop!6

7.6 Applied Example: Handling Outliers

When we’re analyzing data, we sometimes come across outliers in our dataset. They can usually be spotted
quite easily in univariate distributions by large “gaps” in the x-axis without any mass on the y-axis.

ggplot(diamonds, aes(x = y)) +

geom_histogram()

0

10000

20000

30000

0 20 40 60
y

co
un

t

Similar to our introductory plotting example where we couldn’t see exactly what was happening in the
data without a modification to our plot, the same is true here.

6In short: collinearity.

27

ggplot(diamonds, aes(x = y)) +

geom_histogram() +

Truncate the y-axis to [0, 10] to help see the mass at x = 0, 32, and 59.

coord_cartesian(ylim = c(0, 10))

0.0

2.5

5.0

7.5

10.0

0 20 40 60
y

co
un

t

We’ve used the coord cartesian() function in order to truncate the y-axis without discarding any
data. Now we can see that there are more than one observations on the x-axis at the points 0, 32, and 59.

7.6.1 Replacing Outliers with Missing Values

One technique to handling outliers, rather than throwing out the observations entirely, is to retain the
remaining feature values for the observation but replace the outlier feature value with a missing-value. We
can easily do this using an ifelse() statement within a call to mutate():

diamonds %>%

mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%

ggplot(aes(x = y)) +

geom_histogram(bins = 20)

0

2500

5000

7500

5 7 9 11
y

co
un

t

Notice that the range that the variable y takes on is now much more constrained. This can help avoid
spurious results when taking averages, performing statistical analyses, or even machine learning.

8 What Next?

This course is a simple introduction, and we hope to have sparked an appetite for learning more about
statistical computing (in R)! We’ve include some resources in the bibliography below.

Nailing the Basics I found that R in a Nutshell was a great thorough reference.

28

http://shop.oreilly.com/product/0636920022008.do

Packages in R To install a package for the first time (after becoming aware of its existence through a
web search or word of mouth), we may type install.packages("package name") to download and install
the binary files required to call upon the package contents. We then must type library("package name")

at the start of each R session in which we wish to use said package. If you wish to see a listing of available
objects that come exported with a package, try help(package = "<package name>"); from there, you
can inquire for further help on individual function help(package name::function name).

Tidyverse Recently popular in the R programming community, the Advanced R book by Hadley Wick-
ham (click the table-of-contents in the upper left corner to access full course contents) seeks to further
enable interactive statistical programming. The packages rely on the magrittr package to pipe computa-
tions forward in a more readable manner. (For a more introductory but also highly recommended guide
to the tidyverse, check out R for Data Science!)

Visualization The package ggplot2, also by Hadley, provides a grammar of graphics approach to data
visualization. From there, you can easily learn animations via gganimate, or even plotting geospatial
(mapping) data via ggmap, e.g. see this fun example here.

Performant Computing In a completely different direction, one of my favorite packages in R is
data.table, authored by Matt Dowle. It supports assignment by reference, and allows us to compute
on larger data sets more efficiently. Advantages we can already see based on examples above: each call
to aggregate() can be replaced by a group-by operation within the data.table, where we can take
advantage of scoping to forego typing dt$ constantly to select variables. If you’re interested in performant
computing in R, CRAN has an entire page dedicated to this subject, pointing to libraries geared toward
computing with large data efficiently.

Pipelines / Reproducibility If you’re writing a collection of R scripts that are all related, you may
consider bundling them into your own R package. You can then add unit-tests easily via testthat, and
have these run automatically each time you rebuild your package. If you want to be really fancy, you can
integrate these unit tests in with your Git workflow via Continuous Integration, where we emphasize the
aspect of having the tests re-run with each new commit (e.g. Travis).

Interfacing with a Database There are a myriad of ways that R can interface directly with databases.
This can be nice in that you can write SQL queries programmatically in R and then pull the results directly
into memory. See database queries with R.

9 Appendix

9.1 Essential Data Structures

9.1.1 Vector (Operations)

We’ve seen how we can create vectors using c(), :, and functions like seq or rnorm.

u <- c(1, 2, 4, 8, 16)

v <- seq(from = 0, to = 1, length.out = length(u)) # (0, 1/4, 1/2, 3/4, 1)

Exercise: We used the argument length.out within the seq() function call which was used to create
vector v above. Create a vector called odds which generates all non-negative odd values less than 100.
Hint: see ?seq and specifically the argument by.

29

https://adv-r.hadley.nz/
https://adv-r.hadley.nz/
https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html
https://r4ds.had.co.nz
https://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html
https://byrneslab.net/classes/biol607/readings/wickham_layered-grammar.pdf
https://github.com/thomasp85/gganimate
https://github.com/dkahle/ggmap
https://amunategui.github.io/ggmap-example/
https://github.com/Rdatatable/data.table/wiki/Getting-started
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
https://en.wikipedia.org/wiki/Unit_testing
https://github.com/r-lib/testthat
https://en.wikipedia.org/wiki/Continuous_integration#Make_the_build_self-testing
https://github.com/marketplace/travis-ci
https://db.rstudio.com/getting-started/database-queries/

Indexing into Vectors using Extraction Operator There is a handy extraction operator that allows
us to grab particular elements from a vector in a variety of ways, and this is useful.

u[3] # R is 1-indexed.

[1] 4

u[c(3, 5)] # Grabs the third and fifth element from 'u'.

[1] 4 16

u[3] <- 0 # We may access and overwrite individual elems.

For details on this operator, see: help("[").

Exercise: Replace the 10th odd number with a zero, then calculate the sum of the resulting vector.
What answer do you get?

rbind(u, v) # We can also row-bind two vectors to get a matrix; see below.

[,1] [,2] [,3] [,4] [,5]

u 1 2.00 0.0 8.00 16

v 0 0.25 0.5 0.75 1

u + v # Vector addition is performed element-wise.

[1] 1.00 2.25 0.50 8.75 17.00

Vector Arithmetic The last expression demonstrates vector arithmetic behaves in the obvious way, i.e.
element-wise.

Boolean Filtering Note that we can also use a logical predicate condition to filter a vector, e.g.

vals <- rnorm(n = 100)

negs <- vals[vals < 0] # Only keep 'vals' that are negative.

summary(negs) # Notice the maximum is negative, by construction.

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.21470 -0.90948 -0.57097 -0.66069 -0.18673 -0.01619

In the example above, we’ve first created a vector of 100 normally distributed random variables. Then,
we’ve created a logical filter by indexing into our vals using extraction operator [. In particular, the input
we feed to the extraction operator is a Boolean vector describing whether each element in vals is negative.

head(vals < 0) # Notice that vals < 0 returns a Boolean vector.

[1] TRUE FALSE TRUE FALSE FALSE TRUE

30

data <- cbind(original = vals, predicate = vals < 0)

head(data)

original predicate

[1,] -0.6264538 1

[2,] 0.1836433 0

[3,] -0.8356286 1

[4,] 1.5952808 0

[5,] 0.3295078 0

[6,] -0.8204684 1

We remark that a matrix must be homogeneous in the type of data stored, which is why our Boolean
vector of Trues and Falses got converted to 1’s and 0’s respectively.

Ifelse We might have previously run into if() {} else {} statements before. These work when the
predicate condition to the if() statement is a scalar value (i.e. length one vector). If you want to apply
if-else filtering on a vector, you probably want R’s builtin ifelse, is just like if() {} else{} in other
languages except it is vectorized. Example:

data <- 1:10

ifelse(data < 5, 0, data)

[1] 0 0 0 0 5 6 7 8 9 10

Here, we first created a Boolean vector using the expression data < 5. Then, we said: if the condition
is true, emit a zero, else emit the corresponding value in the data vector.

Exercise: Use your vector of non-negative odd numbers less than 100 from the previous exercise. Replace
all odd numbers less than 50 with half their value.

9.1.2 Matrices

A matrix (in R) is just a vector with attributes (number of rows, number of columns, and a corresponding
stride-length). To define a matrix object, we use the aptly named function, matrix().

mat <- matrix(data = 1:9, nrow = 3)

print(mat)

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

Exercise Place the numbers 31 through 60 in a vector p. Place these same numbers in a matrix, call it
Q. Hint: examine your workspace window after creating these objects. How are they similar, or different?

p <- 31:60

Q <- matrix(31:60, nrow = 5, ncol = 6)

31

Matrix Extraction We can access elements using the extraction operator ‘[‘ just as with vectors. I.e.
we access element i,j of a matrix mat via mat[i,j].

Exercise What is the value of the 15th element in p, created in the previous exercise? Print this to
console. Now, print the element in the 5th row and 3rd column of matrix Q, also created previously.

Selecting entire rows or columns from a matrix If you wish to select all of row i, we simply omit
the column index (e.g. mat[i,]), and conversely if we wish to select an entire column.

Exercise: What is the mean value of the second column of our matrix Q created above? Although it’s
easy to eyeball, please calculate the expression using R. What about the mean value of the second row?
Again, same principle in coding the solution to verify what’s immediately obvious from eyeballing the data.

Functions and Matrices Many functions also work with matrices as argument. E.g. we can calulate
the sum total of elements in a matrix using sum(mat).

Exercise What is the mean value in vector p? What about the mean value in matrix Q? Observe the
result if we try computing other basic statistics, such as min(), max(), or median(). Does it make sense
to you why these functions work with matrices?

Efficient Operations on Matrices R has many built-in functions which make matrix operations simple
and performant. E.g. we can calculate column-sums or column-means via colSums() and colMeans()

respectively.

Exercise What are the column-sums of Q? What about the column-means? Hint: see ?colSums.

9.1.3 Lists

Lists are the fundamental data-structure in R. In general, the elements of a list don’t have to be the same
length. And unlike matrices, the elements don’t have to be of the same type either.

l <- list(one = 1, two = 1:2, five = seq(0, 1, length.out = 5))

$one

[1] 1

##

$two

[1] 1 2

##

$five

[1] 0.00 0.25 0.50 0.75 1.00

l$five + 10

[1] 10.00 10.25 10.50 10.75 11.00

l$newVar <- sin(l$five) # We can assign a new element to a list on the fly.

Indexing into (possibly nested) lists can be difficult for beginner R users. See a satirical post.

32

https://twitter.com/hadleywickham/status/643381054758363136?lang=en

Create some salt and pepper packages.

(Each contains a different number of particles and ratio of salt-pepper)

sap <- list(package_A = list(serv_one = rbinom(20, 1, prob = 50/100),

serv_two = rbinom(14, 1, prob = 30/100)),

package_B = rbinom(28, 1, prob = 55/100),

package_C = rbinom(36, 1, prob = 40/100))

Note that the rbinom(n, size, prob) above generates random variables from a binomial distribution
where n is the number of observations, size is the number of trials within each observation, and prob is
the probability of success on each trial.

Exercise Discuss the (non-rigorous) relationship between the salt-and-pepper graphic and the list sap

(created above) with your neighbor. What’s the difference between x[1] and x[[1]] in the graphic (and
correspondingly in our sap object)?

More on List Extraction We emphasize that using the ‘[[‘ extract operator for lists, there are two
methods of access: by name and by position. I.e. sap[["package C"]] is equivalent to sap[[3]] since
we happened to place package C in the third element of our list sap.

Exercise Write down three different ways of accessing the third element of our list l created above.
Verify that they produce an identical result. Hint: one of them uses [[with an integer argument, another
uses [[with a string argument, and the third uses the name of the element with the $ extraction operator.

Exercise Replace the 0.25 with a 0 in the vector of (five) elements that are named “five” in our list l

above. Hint: you may do this in a variety of different ways based on what we’ve seen in the course so far.

9.2 Control Flow

This next section will be particularly useful to those entirely new to programming.

9.2.1 Functions

We can define our own functions in R using the following syntax:

Greeting <- function(name, salutation = "Hello", punctuation = "!") {
paste0(salutation, ", ", name, punctuation)

}

33

The function Greeting requires a name argument, but has default arguments set for the leading
salutation and the trailing punctuation mark. We can override these by supplying the arguments
explicitly. hold

Greeting("Andreas", salutation = "god morgen")

Greeting("Santucci", salutation = "buon giorno")

[1] "god morgen, Andreas!"

[1] "buon giorno, Santucci!"

It’s always the case that the last expression we use in the definition of a function acts as the return or
output. We can also specify explicitly the return value; i.e. we could have defined our function as:

Greeting <- function(name, salutation = "Hello", punctuation = "!") {
return(paste0(salutation, ", ", name, punctuation))

}

Exercise Write a function to compute the value of 2x+ 3.

MyFunction <- function(x) {}

Exercise What happens if you input a vector to your function? Can you predict what the result will
be? Hint: vectors and recycling.

MyFunction(1:10)

Exercise Write a function to compute the number of days since you were born. Your function should
adhere to the following prototype; you may find the helper function Sys.Date() handy, and also note that
you can perform arithmetic on dates.

DaysSinceBorn <- function(birthdate = as.Date("1989-09-04")) {}

Examples from Statistics E.g. we know that we can define R-Squared for non-linear models by looking
at the square of the correlation coefficient between the response y and fitted values ŷ.

RSQU <- function(y, x) cor(y, x)^2 # Univariate case.

RSQM <- function(y, yhat) 1 - sum((y - yhat)^2) / # OLS: 1 - RSS / TSS.

sum((y - mean(y))^2)

RSQG <- function(y, yhat) cor(y, yhat)^2 # General model.

Don’t worry if you haven’t seen some of these definitions before; we hope perhaps one is familiar.

Comparisons The expression a > b for two comparable objects will return a TRUE if a is in fact strictly
larger than b, and FALSE otherwise.

34

http://eriqande.github.io/rep-res-web/lectures/vectorization_recycling_and_indexing.html
https://en.wikipedia.org/wiki/Coefficient_of_determination#As_squared_correlation_coefficient

x <- c(1:10)

x > 8

Exercise Write a function called CheckAgainstThreshold(x, K=1) which, given an input x and a
threshold K (defaulting to unit value), return the result of x > K. Try calling it with inputs of zero,
one, and two individually (keeping the threshold at K = 1). Additionally, pass a vector of inputs c(0, 1,

2); can you explain the result to your neighbor?

Exercise∗ Write a function called CheckID which accepts a birthdate as argument and returns a Boolean
indicating whether the corresponding person is at least K years of age, for K defaulting to 18. Hints: (i)
use as.Date() to cast a string to a Date object, and (ii) using the function Sys.date() may be helpful,
(iii) use the rule of thumb that there are 365.25 days in a year.

CheckID <- function(birthdate, K = 18) {
Your job is to fill in a sub-routine here.

Return true only if birthdate at least K years.

}

Indexing via Booleans We’ve seen previously that we can index into an object (vector, matrix, list)
via individual indices. E.g. vec[i] or mat[i,j]. This will work for any i, j that are in-bounds and of
the same length; we exract a sub-matrix of dimension length(i) × length(j). We’ve also seen in the
previous section that the > operator can be used to compare a vector against a single value, returning a
vector of boolean values as a result.

We can also subset into a vector or matrix using logical conditions. E.g.

set.seed(20210813)

x <- runif(300) # Sample from [0,1] uniformly at random.

idx <- x < 1/2 # In expectation, 1/2 of these evaluate TRUE.

Not run: x[idx] (Return elements of 'x' for which 'idx' is TRUE.)

Function which() and operator==() You also may find the function which() to be helpful when
working with boolean vectors: it returns the indices of the elements whose values are true. Lastly, we
mention that the logical negation operator ! can invert boolean relations.

v = c(1,3,5,7,8)

which(v%%2 == 0)

[1] 5

which(v%%2 != 0)

[1] 1 2 3 4

35

sum(idx)

mean(idx)

[1] 144

[1] 0.48

Boolean Arithmetic You may find it interesting that we can perform arithmetic on booleans. I.e.
sum(idx) and mean(idx) yield the count and proportion of values which satisfy the predicate. I.e. we
count FALSE as zero and TRUE as unit valued.

Exercise Do the following expressions make sense? Discuss with your neighbor what is happening.

FALSE + TRUE == 1L

TRUE + TRUE == 2L

mean(c(FALSE, TRUE))

What is the value of the following expression, in expectation?

mean(rnorm(1e3) < 0)

We’ll revisit another application of Boolean arithmetic when we cover data.frames.

9.3 For-Loops and Apply Functionals

Let’s continue using our foul-balls dataset.

link <- paste0("https://raw.githubusercontent.com/",

"fivethirtyeight/data/master/foul-balls/",

"foul-balls.csv")

data <- read.csv(link)

9.3.1 Control Flow with Data.Frames

What if we wanted to work with a complete set of data, rather than an object that contains some missing
values? Recall that if we use str(), this command will inform us of how many missing values are in each
column. We could also ask the same question a different way, by looping over our columns and summing
over the number of missing values.

for (column in colnames(data))

print(paste("Column", column, "has",

sum(is.na(data[[column]])),

"missing values"))

[1] "Column matchup has 0 missing values"

[1] "Column game_date has 0 missing values"

[1] "Column type_of_hit has 0 missing values"

[1] "Column exit_velocity has 326 missing values"

[1] "Column predicted_zone has 0 missing values"

[1] "Column camera_zone has 513 missing values"

[1] "Column used_zone has 0 missing values"

Let’s break this down a bit.

36

https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)

• The function colnames() returns the column-names for a data.frame.

• The syntax for (var in x) creates a local variable called var whose value gets updated each iter-
ation to reflect the next element in x.

• We then have a print statement such that we can inspect the output.

• We use paste such that we can combine some text and some numbers.

• Lastly, we use sum(is.na()) to count the number of missing values in a column. In particular,
is.na() returns a logical vector of TRUEs and FALSEs, and sum() takes this as input and counts how
many values are TRUE.

Storing Results From for-loop What if we didn’t want to print the results to console, we just wanted
to concatenate the results into a vector? I.e. we suppose we only want to store the number of missing
values in each column, and we don’t care about printing out this data; we just want to store it in a variable.
We might write something like:

result <- c()

for (column in colnames(data))

result <- c(result, sum(is.na(data[[column]])))

At each iteration, we’ve appended an entry to our result describing the number of missing entries in
the corresponding column of our data.frame.

Pre-Allocating Storage Constantly re-sizing an output vector can be a little bit computationally
expensive. It’s cheaper to first pre-allocate the vector, then fill it with data. I.e. instead of appending to
an ever-growing vector, we place values into the appropriate positions of a pre-allocated array.

result <- vector(mode = "numeric", length = ncol(data))

for (i in seq_along(data))

result[i] <- sum(is.na(data[[i]]))

Here, we’ve used seq along(data), which is just like getting a vector 1:ncol(data); we then place
values into our result at the appropriate spot by using result[i] to access the ith element of the result

vector. Similarly, calling data[[i]] gets us the ith column of our data.frame.

Exercise: Calculate the number of unique elements in each column. You may want to consider using
the functions length() and unique(). You can use either an append or a pre-allocate strategy.

An easier way: sapply There’s an easier way to wrap up a for-loop + computation. This pattern
appears so often in R that the language authors created a shorthand for the pattern. It’s called the apply

family of functions.

sapply(colnames(data), function(colname)

sum(is.na(data[[colname]])))

matchup game_date type_of_hit exit_velocity predicted_zone camera_zone

0 0 0 326 0 513

used_zone

0

37

The resulting output is a named vector, where each value in the vector describes the number of missing
elements in the column.

Exercise: Use an sapply functional to calculate the unique number of elements in each column.

9.3.2 Apply Functionals

We can apply a function to each column of our data.frame.

NUnique <- function(x) length(unique(x))

uniques <- sapply(fouls, NUnique)

sapply iterates over its first argument (the “input”), and applies the function provided as second
argument to each of the inputs. In this case, the input is a set of columns, so we iterate over each column
and apply our function NUnique one column at a time.

Exercise Write a function which only returns the numeric columns in a data.frame. You should use
either a for-loop or an sapply to iterate over the columns of the data.frame and check whether each is
a numeric column or not. You can use the function is.numeric() for this purpose. We remark that as
a final step, you’ll need to subset your data.frame using one of the techniques we’ve covered previously.
Your function should adhere to the following prototype:

NumericCols <- function(df) {}

You can ue the foul-balls dataset to test your function!

Exercise Use this function to transform all of the numeric columns according to a transformation of your
choosing. Examples include f(x) = log(x), f(x) = sin(x), f(x) = x + 10. You should first encapsulate
your function into a definition, then use a for-loop or an sapply() to apply the function to each column
returned by NumericCols(). Optionally, you can not only create transformed columns but assign them to
new columns in your existing data.frame. You may find it helpful to use the objects:

require(magrittr) # We load this package so we can use %>%.

cols <- sapply(fouls, is.numeric) %>%

Filter(f = identity) %>%

names()

transformed_cols = paste("transformed", cols)

Here, we’ve used a couple of interesting tactics. The first is that we’ve started to use the pipe operator
%>% in order to pass the output from one operation as the first input input argument into the subsequent
operation. The second is that we’ve filtered the result from the first line using a trivial identity function,
i.e. is.numeric() returned a boolean of TRUEs and FALSEs, and we are simply filtering out the values
which are FALSE. Lastly, ever since we called is.numeric(), we’ve been dealing with a named -vector, and
so as a last step we extract the names for which the previous operation(s) returned TRUE, i.e. we extract
the names for the numeric columns!

This is not a contrived example; lots of times in machine learning we want to apply a transformation
such as log to a set of columns if they describe random variables with support spanning the positive
half-space, or we might apply a logit transform on columns which span the range of [0, 1].

38

Function Composition We’ve seen several examples of function composition in these notes, most
recently: length(unique()). There is a functional programming package called purrr that allows us
to compose functions together!

require(purrr)

sapply(fouls, compose(length, unique))

matchup game_date type_of_hit exit_velocity predicted_zone camera_zone

10 10 5 320 7 8

used_zone

7

We mention this simply becuase it’s syntactic sugar and it’s cool, not because there are performance
benefits.

9.3.3 Loading Multiple Files at a Time

What if we have a folder that contains a bunch of files, all related to each other, such as financial time
series data broken apart by year. Consider BLS Employment and Wages data, available by quarter.
We download a zip file for 2018 from https://www.bls.gov/cew/downloadable-data-files.htm (scroll
down a bit and you’ll see links for “CSVs by Area”). We can do this programatically:

download.file(

file.path(

"https://data.bls.gov/cew/data/files/2018/csv/",

"2018_qtrly_by_area.zip"

),

"~/Downloads/2018.q1-q4.by_area.zip"

)

unzip("~/Downloads/2018.q1-q4.by_area.zip",

exdir = "~/Downloads/2018.q1-q4.by_area")

Now, the resulting directory contains over 4k csv files! How are we going to process them all? We can
use an apply functional and pass it a read.csv function as argument! This allows us to read each file. To
combine them, we can row-bind them together.

There are 4,428 files in the directory!

fnames <- list.files(path = "~/Downloads/2018.q1-q4.by_area/2018.q1-q4.by_area",

full.names = TRUE)

d <- lapply(fnames[3:5], read.csv) %>% # Load several files...

rbindlist() # ...and "stack" them together.

The function lapply() works similarly as sapply(), returning a list (which explains the ”l”) by
applying a given function to elements of a list. The function rbindlist() takes in a list of data.frame’s
and row-binds them together into one larger data.frame object.

Exercise Instead of using lapply() and rbindlist(), can you come up with a way to create the same
result using a for-loop and rbind()? Hint: first create an empty-data.frame, then iterate over a few
file-names (be careful not to try and load more than a handful at once!) and for each: load it into memory
using read.csv(), and then use rbind() to row-bind your (initially empty) data.frame to the newly read
in data. Second hint: what happens when you rbind() an empty data.frame with a non-empty one? Can
this simplify the logic of your for-loop?

39

https://www.bls.gov/cew/downloadable-data-files.htm

9.3.4 Aggregation of Data

Another common theme is data aggregation. Base R can handle this, but there are packages that make it
easier. Let’s first quickly review the aggregate functional, which takes a function used to summarize (or
aggregate) the as argument! The syntax looks as follows:

aggregate(column you want to summarize,

a _list_ of columns you want to group by,

function you want to apply,

optional arguments for the function)

To see this in action, let’s look at the average exit velocity as a function of the type-of-hit. Since
there are NA values in the vector exit velocity, we use na.rm = TRUE to ignore these observations when
calculating our average.

aggregate(

x = fouls[["exit_velocity"]],

by = list(fouls$type_of_hit),

FUN = mean,

na.rm = TRUE

)

Group.1 x

1 Batter hits self 69.38000

2 Fly 76.73703

3 Ground 74.40256

4 Line 82.17857

5 Pop Up 74.27391

You could also do this same thing with a for-loop, but the above is syntactically more concise.

Aggregating by Multiple Columns You might be wondering, why does this aggregate function
require a list of columns for the by argument? Well, this actually works to our advantage when we want
to group-by multiple columns. E.g.

aggregate(

x = fouls[["exit_velocity"]],

by = fouls[, c("type_of_hit", "predicted_zone")],

FUN = mean,

na.rm = TRUE

)

type_of_hit predicted_zone x

1 Batter hits self 1 69.38000

2 Fly 1 74.83968

3 Ground 1 67.46296

4 Line 1 69.10000

5 Pop Up 1 74.27391

6 Fly 2 73.39268

7 Ground 2 67.36471

8 Fly 3 72.09756

40

9 Ground 3 69.80000

10 Line 3 67.10000

11 Fly 4 76.68333

12 Ground 4 81.74643

13 Line 4 94.22222

14 Fly 5 78.72400

15 Ground 5 78.36944

16 Line 5 84.58571

17 Fly 6 100.85000

18 Fly 7 98.66000

Exercise: Discuss with your working group why we can provide a data.frame with multiple columns
in place of a list within the by argument of the aggregate function above. Hint: what’s the relationship
between a data.frame and a list?

data.table package What if we want to calculate the mean and standard-deviation for each type of
hit? For this, I personally find data.table package to really shine.

install.packages("data.table")

require(data.table)

setDT(fouls) # Convert the data.frame to a data.table

fouls[, .(avg = mean(exit_velocity, na.rm = TRUE),

std = sd(exit_velocity, na.rm = TRUE)),

by = type_of_hit]

type_of_hit avg std

1: Ground 74.40256 14.582302

2: Fly 76.73703 10.810123

3: Line 82.17857 17.082776

4: Batter hits self 69.38000 7.918775

5: Pop Up 74.27391 5.992715

There are some details on the syntax that are well beyond the scope of the course, but I would argue
it’s relatively easy to read.

9.4 Linear Modeling

9.4.1 Regression

Let’s introduce some basic modeling techniques. We start with linear regression. In R, the way to construct
a linear model is using the command lm(), it accepts a formula and a data.fame.

m <- lm(formula = cty ~ displ, data = mpg)

Here, we’ve fit a regression where we explain the variation in city miles-per-gallon as a function of
displacement. We should expect a negative marginal effect, as per our plot above.

summary(m)

41

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html

##

Call:

lm(formula = cty ~ displ, data = mpg)

##

Residuals:

Min 1Q Median 3Q Max

-6.3109 -1.4695 -0.2566 1.1087 14.0064

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.9915 0.4821 53.91 <2e-16 ***

displ -2.6305 0.1302 -20.20 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 2.567 on 232 degrees of freedom

Multiple R-squared: 0.6376,Adjusted R-squared: 0.6361

F-statistic: 408.2 on 1 and 232 DF, p-value: < 2.2e-16

Exercise: What’s the interpretation of our displ coefficient in the model that we fit above?

Model Diagnositics R has a lot of facilities for diagnosing linear models, for example, we can run

plot(m)

to get a sequence of summary plots describing our model-fit; this allows us to check if our modeling
assumptions were satisfied.

Prediction What if we want to impute values on unseen observations? We can use the predict()

function!

df <- data.frame(displ = seq(min(mpg$displ), max(mpg$displ), length.out = 20))

head(df)

displ

1 1.600000

2 1.884211

3 2.168421

4 2.452632

5 2.736842

6 3.021053

df$predicted_cty <- predict(object = m, newdata = df)

head(df)

displ predicted_cty

1 1.600000 21.78270

2 1.884211 21.03509

42

3 2.168421 20.28748

4 2.452632 19.53986

5 2.736842 18.79225

6 3.021053 18.04464

plot(df, type = 'l')

Nothing interesting happens in the plot, because we’ve simply fit a linear model with a single feature,
so the plot is just a downward sloping line (with slope equal to the coefficient obtained from the linear
model. I.e., if we were to plot out our residuals as a function of our feature, we’d see a non-linear trend,
which indicates that our model specification wasn’t completely accurate.

plot(x = mpg$displ, y = m$residuals)

●

●
●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●●

●

●●
●

●

●
●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●
●
●
●

●

●

●● ●●● ●

●
●●

●
●

●●●●

●

●

●
●

●
●

●
●
●

●

●●

●●

●●

●

●●
●●

●
●
●

● ●
●

●

●

●

●
●

●

●
●

●

●●
●

●
●

●

●

●

●

●●

●●

●
●

●

●
●

●

●
● ●

●
●

●

●●

●
●
●

●

●

●
●●
●●
●
●

●
●

●●

● ●
●●

●●

●●

●

●●
●
●

●●
●

●●

●

●

●

●

●

●
●
● ●●

●
●●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

2 3 4 5 6 7

−
5

0
5

10

mpg$displ

m
$r

es
id

ua
ls

No-
tice there is a quadratic relationship “leftover”, i.e. that was not explained by our model: the residuals
tend to be higher when displacement is low (and high) and smaller (or even negative) for moderately sized
values of displacement.

Exercise The function plot takes in an x and y argument, and with these you can create a scatter plot.
Create a scatter plot of the predicted vs. used zone. Since many of the points may overlap ontop of each
other, use jitter to add some random noise to your inputs

plot(x = jitter(...), y = jitter(...))

This is just like using geom jitter() with ggplot2.

43

Adding Features to a Linear Model But we observed a slightly non-linear relationship when we
plotted our raw data. What if we add a quadratic term? to account for the trend we saw in the original
graph, and the takeaways we took from our residuals plot above.

m2 <- lm(cty ~ displ + I(displ^2), data = mpg)

The new model has improved explanatory power, as can be seen by comparing the diagnostic plots via
plot(m); plot(m2).

df$predict_cty <- predict(m2, df)

Notice that we didn’t have to create a squared explanatory variable, even though one is included in
our model; R is smart enough to figure out how to create one for us given an appropriate input (i.e. a
data.frame that has all the same features as used in the original model). Let’s plot this trend we’ve fit and
then also overlay the original data to eyeball how we’ll we’ve fit the data:

plot(df$displ, df$predict_cty, type = "l")

points(x = jitter(mpg$displ), y = jitter(mpg$cty), col = "red")

2 3 4 5 6 7

14
16

18
20

22
24

df$displ

df
$p

re
di

ct
_c

ty

●

●

●

●

●

● ●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●●

●●

●

●●

● ●

●

●

●

● ●●

●

●●

● ●

●

●

●

●

●

●

●

●●
●

●

●●

●

●● ●

●

●

●

●

● ● ●

●●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●

●●

●

●

● ●

● ●

●

●

●

●

●●

● ●

● ●●

●

●

● ● ●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●●
●
●

●●

●

●● ●

●

●●
●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

Additional ways to add Interactions and Crosses You can use : in a formula to specify an inter-
action and you can use * to specify a cross. What does this mean?

• If you say y ∼ var1:var2, you’re saying that the marginal effect of the response depends on the
interaction between the two variables.

• If you use y ∼ var1*var2, then this is shorthand for writing y ∼ var1 + var2 + var1:var2,
where we are allowing for differing slope coefficients within each of var1, var2, and their interaction
separately.

To learn more about this type of thing you would simply call ?lm in the console.

44

Factor variables in modeling Factor variables get a bad reputation from those who are new to R
programming, but they are incredibly useful. When used as a feature in a model, a string or factor
variable with k different categories automatically gets treated as k − 1 indicator variables. E.g. we can
regress city-mpg as a function of manufacturer.

m3 <- lm(cty ~ manufacturer, data = mpg)

Note that we’ve calculated coefficients relative to our baseline, which in this cause is the first manu-
facturer in lexicographic (alphabetical) order, i.e. all coefficients describe the marginal effect of switching
from Audi to another manufacturer:

coef(m3)

(Intercept) manufacturerchevrolet manufacturerdodge manufacturerford

17.6111111 -2.6111111 -4.4759760 -3.6111111

manufacturerhonda manufacturerhyundai manufacturerjeep manufacturerland rover

6.8333333 1.0317460 -4.1111111 -6.1111111

manufacturerlincoln manufacturermercury manufacturernissan manufacturerpontiac

-6.2777778 -4.3611111 0.4658120 -0.6111111

manufacturersubaru manufacturertoyota manufacturervolkswagen

1.6746032 0.9183007 3.3148148

Exercise: We observed that the intercept term for city miles-per-gallon seems to depend on whether the
car is front, rear, or four-wheel drive. Can you construct a model which incorporates this information?
How does the interpretation of the coefficients match the intuition described by the plot we made above?

Exercise: Perhaps the relationship between city mileage and displacement depends on the manufacturer.
Can you encode this information into a model?

9.4.2 Binary Classification

What about a simple logistic regression? Let’s consider a dataset from https://archive.ics.uci.edu/

ml/machine-learning-databases/00426/.

download.file(

url = file.path("https://archive.ics.uci.edu/ml",

"machine-learning-databases/00426",

"Autism-Adult-Data%20Plus%20Description%20File.zip"),

destfile = "~/Downloads/autism.zip"

)

unzip("~/Downloads/autism.zip", files = "Autism-Adult-Data.arff", exdir = "~/Downloads")

To load this data, we need the foreign package, since the data is in a Weka attributational relational
file format (i.e. a special file type).

require(foreign)

data <- read.arff("~/Downloads/Autism-Adult-Data.arff")

str(data)

45

https://archive.ics.uci.edu/ml/machine-learning-databases/00426/
https://archive.ics.uci.edu/ml/machine-learning-databases/00426/

'data.frame': 704 obs. of 21 variables:

$ A1_Score : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 1 2 2 2 ...

$ A2_Score : Factor w/ 2 levels "0","1": 2 2 2 2 1 2 2 2 2 2 ...

$ A3_Score : Factor w/ 2 levels "0","1": 2 1 1 1 1 2 1 2 1 2 ...

$ A4_Score : Factor w/ 2 levels "0","1": 2 2 2 2 1 2 1 2 1 2 ...

$ A5_Score : Factor w/ 2 levels "0","1": 1 1 2 1 1 2 1 1 2 1 ...

$ A6_Score : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 2 ...

$ A7_Score : Factor w/ 2 levels "0","1": 2 1 2 2 1 2 1 1 1 2 ...

$ A8_Score : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 1 2 2 ...

$ A9_Score : Factor w/ 2 levels "0","1": 1 1 2 1 1 2 1 2 2 2 ...

$ A10_Score : Factor w/ 2 levels "0","1": 1 2 2 2 1 2 1 1 2 1 ...

$ age : num 26 24 27 35 40 36 17 64 29 17 ...

$ gender : Factor w/ 2 levels "f","m": 1 2 2 1 1 2 1 2 2 2 ...

$ ethnicity : Factor w/ 11 levels "Asian","Black",..: 11 4 4 11 NA 7 2 11 11 1 ...

$ jundice : Factor w/ 2 levels "no","yes": 1 1 2 1 1 2 1 1 1 2 ...

$ austim : Factor w/ 2 levels "no","yes": 1 2 2 2 1 1 1 1 1 2 ...

$ contry_of_res : Factor w/ 67 levels "Afghanistan",..: 65 14 57 65 23 65 65 44 65 10 ...

$ used_app_before: Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...

$ result : num 6 5 8 6 2 9 2 5 6 8 ...

$ age_desc : Factor w/ 1 level "18 and more": 1 1 1 1 1 1 1 1 1 1 ...

$ relation : Factor w/ 5 levels "Health care professional",..: 5 5 3 5 NA 5 5 3 5 1 ...

$ Class/ASD : Factor w/ 2 levels "NO","YES": 1 1 2 1 1 2 1 1 1 2 ...

Let’s pretend we’re interested in classifying the outcome of A10 Score, and we can use some of the
features in our dataset to explain the variation in the response. Since A10 Score is a binary outcome, we
might consider a logistic regression. A logistic regression is a special type of a generalized linear model, so
we use the command glm(), where in particular we specify that we want a binomial family i.e. a logistic
link function.

data <- na.omit(data)

m <- glm(A10_Score ~ age + gender + ethnicity + jundice + austim + contry_of_res,

family = "binomial", data)

We can still do things that we did before with our data, like call plot() on the model-object to view
diagnostics, call summary() to view coefficients and statistical conclusions drawn, and use the predict()

function to make predictions on new data.

Calibration How well do our predictions explain our data? Our logistic regression spits out a probability
in the interval [0, 1], but any given outcome (i.e. label) is either a zero or a one. So how can we evaluate
the performance of our classfier? One way is to check its calibration.

What is calibration? If a classifier spits out a prediction of 0.4, then we would hope that about
40% of such predictions should indeed have a “positive” label. If it turns out that only 10% or say
80% of predictions have a positive label, we would not say our model is calibrated. By using type =

’’response’’, we ask our predict() method to give us probabilities as predictions; don’t forget this!

data$prediction <- predict(m, data, type = "response")

Now let’s aggregate our data.

46

https://en.wikipedia.org/wiki/Logistic_regression

aggregate(x = as.integer(as.character(data$A10_Score)),

by = list(prediction = round(data$prediction, 1)),

FUN = mean, na.rm = TRUE)

prediction x

1 0.0 0.0000000

2 0.2 1.0000000

3 0.3 0.2500000

4 0.4 0.4479167

5 0.5 0.4692308

6 0.6 0.6300000

7 0.7 0.6793893

8 0.8 0.7761194

9 0.9 0.9047619

10 1.0 1.0000000

It looks like we did a “bad” job at predicting the lower-tail. But how much data was there in the tails?
One technique we can use is bucketizing our data into quantiles!

9.4.3 Quantiles and Discretizing Data

We use cut() and quantile().

breaks <- quantile(data$prediction, probs = seq(0, 1, by = 0.1),

na.rm = TRUE)

data$bucket <- cut(data$prediction, breaks, include.lowest = TRUE)

Now, we’ve assigned each observation to one of ten quantiles. This means there’s approximately an
even number of observations in each bucket.

Exercise: Can you verify that we have bucketed our data such that there is an equal amount of support
in each bucket? Hint: see prop.table(). If you’d like, after using this function you can try calling plot()

on the output to get a visual.

Re-Aggregating Data Let’s now re-aggregate our data.

outcomes <-

aggregate(x = as.integer(as.character(data$A10_Score)),

by = list(prediction = data$bucket),

FUN = mean, na.rm = TRUE)

outcomes

prediction x

1 [1.38e-08,0.414] 0.2295082

2 (0.414,0.449] 0.5074627

3 (0.449,0.476] 0.4000000

4 (0.476,0.535] 0.4590164

5 (0.535,0.592] 0.6229508

6 (0.592,0.657] 0.6769231

7 (0.657,0.699] 0.6842105

47

8 (0.699,0.749] 0.6721311

9 (0.749,0.829] 0.7500000

10 (0.829,1] 0.9672131

Visualizing Median Predictions against Mean Outcomes It’s a little bit hard to see what’s going
on, let’s visualize our data by plotting the mean outcome against the median prediction within each bucket.

median_predictions <-

aggregate(x = data$prediction,

by = list(prediction = data$bucket),

FUN = median, na.rm = TRUE)

summ <- merge(outcomes, median_predictions,

by = "prediction",

suffixes = c("_outcome", "_median_prediction"))

summ

prediction x_outcome x_median_prediction

1 (0.414,0.449] 0.5074627 0.4375913

2 (0.449,0.476] 0.4000000 0.4652986

3 (0.476,0.535] 0.4590164 0.4966645

4 (0.535,0.592] 0.6229508 0.5600122

5 (0.592,0.657] 0.6769231 0.6236088

6 (0.657,0.699] 0.6842105 0.6753622

7 (0.699,0.749] 0.6721311 0.7169160

8 (0.749,0.829] 0.7500000 0.7840766

9 (0.829,1] 0.9672131 1.0000000

10 [1.38e-08,0.414] 0.2295082 0.3453151

ggplot(summ, aes(x = x_median_prediction, y = x_outcome)) +

geom_point() +

geom_abline(slope = 1, intercept = 0) +

labs(title = "Visualizing Calibration of a Classification Model",

subtitle = "Data are grouped into Deciles",

x = "Median Prediction",

y = "Average Observed Label")

48

●

●

●

●

● ●
●

●

●

●

0.2

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Median Prediction

A
ve

ra
ge

 O
bs

er
ve

d
La

be
l

Data are grouped into Deciles

Visualizing Calibration of a Classification Model

Here we have a model that is not too unreasonably calibrated.

49

10 Practice Exercises

10.1 Built-in Constants

R has a few built-in constants that are really handy. See: ?letters for a listing. Also realize that you
can create data.frames with objects in memory using syntax that looks as follows:

df <- data.frame(variable1 = 1:10,

variable2 = rnorm(10))

Exercise Create a data.frame where the first column is labeled “id” and contains the first 12 letters of
the lower-case alphabet, the second column should be labeled “month” and contain the 12 calendar months
in temporal order, and a third column should contain some random noise drawn from a distribution of
your choosing (e.g. see ?rpois, ?rexp).

Exercise The summary() command is very powerful, especially when applied to data.frames. Try
calling summary() on various objects like the data.frame you just created in the previous exercise.

10.2 First Principles Statistics

Exercise Make a script which constructs three random (standard) normal vectors of length 1,000. Call
these vectors x, y, and z. Now, create a data.frame with columns a, b, and c which are respectively
defined as x, x+ y, and x+ y + z.

Exercise Additionally, print out the (scalar-valued) variance of each column from the previous exercise
one at a time to console, using the built-in function var(). Can you explain the (statistical) result?

Exercise Using the same data.frame created in the first exercise of this sub-section, try plotting in the
following way.

Assuming we have (only!) columns "a", "b", "c" in our `df`.

m <- reshape2::melt(df) # <-- Automatically creates long data.frame.

m <- m %>% group_by(variable) %>% mutate(idx = seq_along(value))

ggplot(m, aes(x = value, fill = variable)) +

geom_histogram(bins = 50) +

facet_wrap(~variable, nrow = 3)

How does this match your statistical intuition?

10.3 Creating New Variables in data.frames

Exercise Try creating a data.frame with three numeric variables: x, y, and z; they can all be random
noise if you wish, e.g.

df <- data.frame(x = rnorm(6), y = rpois(6, lambda = 1), z = rexp(6))

Now, try creating a new variable, call it alpha, which takes on a transformation of other data in
data.frame df. E.g. α = x+ y2 + sin(z). Remember that if you want to refer to (either a new or already
existing) column that you can use either “$” or ‘[[‘ syntax, or you can also use mutate().

50

10.4 Boolean Arithmetic

The daily utility of boolean arithmetic is indispensable. I.e. want to know the proportion of GPA’s above
3.5, segmented by under-graduate major? Simply create a boolean vector comparing GPA to 3.5, and use
it as an input argument to mean(). . . all of this well be used within an argument to summarise(). Start
with:

majors <- c("bio", "chem", "math", "english", "statistics")

df <- data.frame(major = sample(majors, size = 100, repl = TRUE),

10.5 Operations on Filtered data.frames

Suppose we have a data.frame as follows.

d <- data.frame(i = letters,

x = runif(26),

y = rnorm(26),

z = rnorm(26))

d %>% slice(c(1:3, nrow(d)))

i x y z

1 a 0.2421283 0.2254034 1.7356292

2 b 0.3021749 -1.0121942 -0.5369853

3 c 0.1899508 0.7091858 0.4168233

4 z 0.5563188 -0.4868593 -0.7877618

Pull out the first, third, and last row by ID.

d %>% filter(i %in% c("a", "c", "z"))

i x y z

1 a 0.2421283 0.2254034 1.7356292

2 c 0.1899508 0.7091858 0.4168233

3 z 0.5563188 -0.4868593 -0.7877618

Exercise We could also do things like, perform conditional correlation between two columns; i.e. for
observations satisfying the boolean condition (in this case, if the ID is one of “a”, “c”, or “z”) we take a
correlation. This will involve two steps: one call to filter() and another to summarise() where within
the latter we make a call to cor().

10.6 Plotting

Colours and Density Plots Using the mpg dataset, can you add a colour layer describing the drv

(drivetrain-type) to a density plot of cty miles-per-gallon? See ?geom density().
In addition to using the colour layer, in a separate plot try replacing colour with fill and see what

happens. Hint: the optional argument alpha may be helpful; the syntax to use it is something like
geom density(alpha = 1/2).

51

Box and Whisker Plots Using our foul-balls dataset, we can also wonder if exit velocity depends on
the type of hit. Perhaps a box-and-whisker plot is appropriate here. Hint: if you want to use ggplot2,
consider the geom boxplot() geometry; it’s also worth seeing what happens if you feed in type of hit as
the explanatory (independent) variable in a basic plot routine (i.e. as first argument)

10.7 Working with Strings and Dates

Try creating a date vector: R has handy built-in’s for this!

dates <- seq.Date(from = as.Date("2021-08-01"),

to = as.Date("2021-12-31"),

by = "1 day")

We used the as.Date() function to create a date object from a string. The seq.Date() function is a
specialized method of the more general seq() that is designed to create date-sequences.

Exercise First, install/load either data.table package or lubridate to get access to the month()

function. Call the function month() on the dates object above. What do you get? What happens if you
call table() on the resulting output? Can you explain the result to your neighbor?

Exercise Given a year (specified as an integer), can you write a function to determine if it is a leap-year?
Hint: can you find a way to use the paste() function to combine an integer year with string describing a
month and day to create a date object? E.g.

year <- "2012"

beg_date <- as.Date(paste(year, "01-01", sep = "-"))

Follow-up hints: consider using the functions seq.Date() and length().

Exercise (1) Try creating a vector of strings, where each string contains a first and a last name (separated
by a space). E.g.

names <- c("Andreas Santucci", "Ada Lovelace")

df <- data.frame(name = names)

(2) Use the function separate() with argument sep chosen judiciously to split the first and last names
apart; note that you’ll have to use the into argument, I recommend using into = c("first", "last").
(3) Inspect the output, what is the class of the object and what is its structure?

Exercise Although there is a handy year() and month() function built-in to data.table and lubridate

packages, there isn’t an equivalent day() function. Use strsplit() and do.call(rbind, .) on the
dates object we created above in order to create a matrix where the year, month, and day attributes are
separated from each other into their own columns. If you want to, you can also place the dates object into
a data.frame as a variable, and then use tidyr::separate() with argument split chosen appropriately.
This latter approach may be more applicable to real world scenaios where you have dates inside of a
data.frame, as opposed to dealing with a standalone dates object.

52

10.8 Case Study

Let’s try a more practical case study example. There’s a datset called starwars that’s already loaded into
your workspace when you load the dplyr package.

head(starwars)

Exercise: Imputing a String Notice that there are a few missing values for hair color. Find out, using
verbs dplyr::group by(), dplyr::select(), and dplyr::count(), and dplyr::arrange(). Now that
you’ve identified what the most common value is for this variable, try “imputing” NA entries with this
value. Hint: consider dplyr::mutate() and ifelse() alongside is.na().

Exercise: Spotting Outliers There are outliers in the birth year variable. Can you come up with
a technique to spot them, e.g. creating a graphic that visually identifies them? Once you identify them,
can you create a new variable that’s Boolean valued that describes whether birth year is an outlier? Or
perhaps another variable that is the log() transform of the birth year...

Exercise: Splitting Names Suppose you were tasked with splitting names into “first” and “last”
components. The way to do this is to use tidyr::separate(), in general, however, there are some special
considerations to pay attention to with this dataset.

• Some names have more than 2 components. What should we do with these? Let’s arbitrarily decide
to lump all but the first component together and call that the “last” name. To accomplish this,
consider using the arguments extra = ’merge’ and fill = ’right’.

• Some names don’t have spaces to split on, they perhaps have dashes. Can we handle this in one call
to separate()? The answer is yes, we just need to set sep = ’ |-’, which means: “split on either
a space or a dash”.

Note that you’ll have to be careful when porting the above code into your script/console as the quotation-
marks aren’t properly displayed in the pdf.

Exercise: Spotting multi-tonal skin colors As usual, the operations we seek to perform can be easily
carried out in base-R but there are wrappers written by Hadley Wickham’s supporting team.

install.packages("stringr")

1. Use select() and unique() to get a glimpse of what the distinct types of skin color we are observing
in our raw data.

2. Use mutate() to create a new variable that is Boolean valued and describes whether there is more
than one skin-tone. Hint: use str detect().

53

11 Base-R Exercises

Exercises marked with (*) may be slightly more difficult.

1. You are given an input of numeric values x, and are told that instead of corrupted observations being
reported as missing, they are instead reported as the numeric value 999. E.g. a sample input could be
x = c(1, 4, 2, 999, 7, 11, 999, 999, 12). Use ifelse to create a new object which replaces
any instance of 999 with NA, which is R’s internal representation for “not available” or missing data.
Then, use sum(), !, and is.na() to count the number of non-missing entries provided in the input.

2. You are given an input of consecutive integers between 1 and N inclusive, except exactly one
element is missing. Your goal is to write a function which returns the missing element. E.g.
FindMissing(c(1,2,4,5)) should return 3. Hints: try solving several ways: (i) by using oper-
ators which(), %in%, and !, (ii) by using setdiff(), range(), and seq(), and (iii) using triangular
numbers.

3. Make a vector of consecutive integers from 1 to 100 inclusive. Write a for-loop which runs through
the whole vector, multiplying elements less than 5 or larger than 90 by 10 and all other elements by
1/10. Then, rewrite your above solution using what you learn from examining ?ifelse.

4. You are given an input sequence x and an output sequence f(x). Write a function which returns
the value of x corresponding to the maximum of f(x). I.e. implement an argmax function that is of
zeroth-order. Hint: see ?which.max, and use the result in conjuction with an ‘[‘ operator.

5. You are given a single string with a listing of words. Return a table describing the frequency of
word-occurrences. Hint: you’ll find the functions strsplit(), unlist(), and table(), helpful.

6. You are given a folder (working directory) with consumption data stored in .csv files which you need
to load into memory. There are 12 files, one for each calendar month of a particular year. Your goal
is to use list.files() and a for() loop to iteratively rbind() the data.frame’s together. You’ll
need to take care to add a month describing the calendar month during the process, since the raw
data won’t include this. To get started, run the following code to create 12 sample data files in a
new directory.

dir.create("calendar_months_data", showWarnings = FALSE)

for (i in 1:12) {
d <- data.frame(id = letters, y = rnorm(26))

write.csv(d, file = paste0("calendar_months_data/month_", i, ".csv"),

row.names = FALSE)

}

Once you solve the problem iteratively using rbind(), try to understand what the following expres-
sion does. l <- lapply(fnames, read.csv); do.call(rbind, l). See ?sapply() which replaces
a for-loop, and do.call().

7. (*) Rewrite our data generation process used in the above question as follows: first write a function
Create(i) which takes an integer i and effectively replaces the body of our for-loop above. Then,
realize that we can simply write for (i in 1:12) Create(i) to achieve the same result! Now, look
at ?sapply and figure out how to use it to achieve again the identical result.

8. (*) You are again given a single string with a listing of words. Return a frequency count of all
n-grams occurring, for arbitrary n. We define an n-gram as a contiguous sequence of n words. Hint:
start with n = 2.

54

https://en.wikipedia.org/wiki/Triangular_number
https://en.wikipedia.org/wiki/Triangular_number
https://en.wikipedia.org/wiki/N-gram

9. (*) Given an input stream 1,000 digits long, find the greatest product of five consecutive digits. (The
input is given as a single string. Your output should be a single scalar.)

10. (*) Given an integer K, return a description of the number of days in each of the twelve calendar
months; some years are leap years, in which case February will have 29 days. Hint: see ?seq.Date.
An ideal solution will create a data.frame with three columns: one with the year, another with the
month-name, and a third with the number of days in the month (and year).

11. (*) You are given an urn with an unlimited number of balls in it, where you are told that 4/10 of
them are red, 1/2 are green, and the remaining 1/10 are blue. You draw a sequence of balls until
you draw one which is blue. How many draws do you expect to take before realizing a success?
Hint: you can solve this problem using built-in statistical functions if you understand the probability
distribution we are drawing from, and alternatively you can also solve it via simulation. You may
find ?replicate to be helpful if you choose the latter approach.

12. (*) What’s more likely, the sequence of coin tosses HTH or HHT? Support your answer with a simulation
in R. This answer can also be answered using theory from Markov chains.

13. (*) What’s the difference between sapply() and lapply() exactly? Can you make one behave like
the other? Hint: see head(sapply) and also ?sapply.

14. (*) Why would you use mapply()? As a trivial example, consider re-implementing element-wise
vector addition in terms of a single (and simple) call to mapply where we supply FUN = "+". Hint:
see help("+") to learn the names of the arguments the addition operator expects.

References

[1] Wickham, Hadley Introduction to R 2017, O’Reilly

[2] Adler, Joseph. R in a Nutshell 2012, O’Reilly

[3] Brauer, Torfs. A (very) short introduction to R. 2014, CRAN.

[4] Burns, Patrick. The R Inferno 2011

[5] Free resources for learning R 2016, Stack Exchange

[6] Abelson and Susman Structure and Interpretation of Computer Programs MIT, 2005

[7] An Introduction to R CRAN, July 2018

[8] Dirk Eddelbuettel CRAN Task View: High-Performance & Parallel Computing with R July 30, 2018

[9] Hilary Parker Writing an R Package from scratch April 29, 2014

[10] Jonathan Taylor Data Science 101 Spring 2018

55

https://r4ds.had.co.nz/
http://shop.oreilly.com/product/0636920022008.do
https://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://stats.stackexchange.com/q/1213
https://mitpress.mit.edu/sites/default/files/sicp/index.html
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
https://web.stanford.edu/class/stats101/

	Background Reading
	Introduction
	History
	Why R?

	Setting Up R
	R Studio
	Emacs Speaks Statistics
	10k Foot Overview

	Help and Documentation
	Course Outline

	Additional Set-Up
	Data Visualization
	Univariate distributions
	Bivariate distributions
	Adding Additional Dimensions to your Plots

	Visualizing Smoothed Relationships with Modeling Techniques
	Statistical Transformations when Plotting

	Revisiting a Couple of Basics in R
	As (an extensible) Calculator
	Variables
	Scalars and Vectors
	(Using) Functions

	Built-in Statistical Functions
	Assignment Operators
	Scripts

	Data Frames
	Using read.csv to read in spreadsheet data
	Indexing into Data.Frames
	Techniques for Data Inspection
	Re-order rows of a data.frame via dplyr::arrange()
	Data Transformations
	Filtering rows using filter()

	Adding New Variables to a data.frame
	dplyr::mutate()

	Tabulating two categorical fields
	Imputation
	Other Ways of Getting data.frames Into R
	Remote Files
	Copy Paste

	Aggregating and Reshaping Data
	Aggregation of Data
	Summarizing Multiple Columns

	Reshaping Data

	Putting It All Together
	Data Collection, Ingestion
	Data Visualization
	A First Model
	Checking Linear Model Assumptions
	Iterative Model Refinement
	Applied Example: Handling Outliers
	Replacing Outliers with Missing Values

	What Next?
	Appendix
	Essential Data Structures
	Vector (Operations)
	Matrices
	Lists

	Control Flow
	Functions

	For-Loops and Apply Functionals
	Control Flow with Data.Frames
	Apply Functionals
	Loading Multiple Files at a Time
	Aggregation of Data

	Linear Modeling
	Regression
	Binary Classification
	Quantiles and Discretizing Data

	Practice Exercises
	Built-in Constants
	First Principles Statistics
	Creating New Variables in data.frames
	Boolean Arithmetic
	Operations on Filtered data.frames
	Plotting
	Working with Strings and Dates
	Case Study

	Base-R Exercises

